Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 95))

  • 234 Accesses

Abstract

The dynamics of a fragmenting finite system can be well modeled by Classical Molecular Dynamics (CMD). Of course in such studies we are not interested in reproducing the data coming from nucleus-nucleus, cluster-cluster or fullerene-fullerene collisions, which are strongly influenced by quantum features, but simply in the possibility that a finite (un)charged system “remembers” of a liquid to gas phase transition which occurs in the infinite case limit [1]. Classical particles interacting through a short range repulsive interaction and a longer range attractive one have an Equation of State (EOS) which resembles a Van Der Waals (VDW) [1,2]. It is also well known that the Nuclear EOS resembles a VDW as well [3], thus classical studies of the instability region are quite justified in order to understand the finite size plus Coulomb effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Latora, V., Belkacem, M., and Bonasera, A., (1994) Phys. Rev. Lett. 73, 1765; Belkacem, M., Latora, V., and Bonasera, A., (1995) Phys. Rev. C 52, 271; Finocchiaro, P., Belkacem, M., Kubo, T., Latora, V., and Bonasera, A., (1996) Nucl. Phys. A 600, 236.

    Article  ADS  Google Scholar 

  2. Landau, L., and Lifshits, E., (1980) Statistical Physics, Pergamon, New York; Huang, K., (1987) Statistical Mechanics, J. Wiley, New York, 2nd ed.

    Google Scholar 

  3. Goodman, A.L., Kapusta, J.I., and Mekjian, A.Z., (1984) Phys. Rev. C 30, 851.

    Article  ADS  Google Scholar 

  4. Bonasera, A., and Schulte, J., (1998), contr. to the Proc. on Similarities and Differences between Atomic Nuclei and Clusters, Abe et al., eds., AIP.

    Google Scholar 

  5. Gilkes, M.L., et al., (1994) Phys. Rev. Lett. 73, 1590, and references therein.

    Article  ADS  Google Scholar 

  6. Fisher, M.E., (1971), in Proc. Int. School of Physics, Enrico Fermi Course LI, Critical Phenomena, Green, M.S., ed., Academic, New York, p. 255.

    Google Scholar 

  7. Campi, X., (1986) J. of Phys. A 19, 917; Campi, X., (1988) Phys. Lett. B 208, 351.

    Article  ADS  Google Scholar 

  8. Dorso, C., and Strachan, A., (1996) Phys. Rev. B 54, 236.

    Article  ADS  Google Scholar 

  9. Mastinu, P.F., et al., (1996) Phys. Rev. Lett. 76, 2646, and references therein.

    Article  ADS  Google Scholar 

  10. Ploszajczak, M., and Tucholski, A., (1990) Phys. Rev. Lett. 65, 1539.

    Article  ADS  Google Scholar 

  11. Belkacem, M., et al., (1996) Phys. Rev. C 54, 2435.

    Article  ADS  Google Scholar 

  12. Latora, V., Del Zoppo, A., and Bonasera, A., (1994) Nucl. Phys. A 572, 477.

    Article  ADS  Google Scholar 

  13. for a review see Bonasera, A., Bruno, M., Dorso, C., and Mastinu, P.F., (1998) Riv. Nuovo Cimento, in press.

    Google Scholar 

  14. Phair, L., et al, (1997) Phys. Rev. Lett. 79, 3538.

    Article  ADS  Google Scholar 

  15. Mastinu, P.F., et al., unpublished.

    Google Scholar 

  16. D’Agostino, M., et al., in preparation.

    Google Scholar 

  17. Bonasera, A., Latora, V., and Rapisarda, A., (1995) Phys. Rev. Lett. 75, 3434.

    Article  ADS  Google Scholar 

  18. Burgio, G.F., and Bonasera, A., in preparation.

    Google Scholar 

  19. Bonasera, A., Gulminelli, F., and Molitoris, J., (1994) Phys. Rep. 243, 1.

    Article  ADS  Google Scholar 

  20. Natowitz, J., contr. to the Proceedings.

    Google Scholar 

  21. Smerzi, A., Bonasera, A., and Di Toro, M., (1991) Phys. Rev. C 44, 1713.

    Article  ADS  Google Scholar 

  22. Ramakrishan, A., et al., (1996) Phys. Lett. B 383, 252.

    Article  ADS  Google Scholar 

  23. Pochodzalla, J., et al., (1995) Phys. Rev. Lett. 75, 1040.

    Article  ADS  Google Scholar 

  24. Albergo, S., et al., (1985) Nuovo Cim. A 89, 1.

    Article  ADS  Google Scholar 

  25. Elliot, J., et al., contr. to the Proceedings.

    Google Scholar 

  26. Tsang, M.B., et al., (1996) Phys. Rev. C 53, R1057.

    Article  ADS  Google Scholar 

  27. Gross, D.H., contr. to the Proceedings and refs. therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bonasera, A. (1999). Critical Phenomena in Finite Systems. In: Blaizot, JP., Campi, X., Ploszajczak, M. (eds) Nuclear Matter in Different Phases and Transitions. Fundamental Theories of Physics, vol 95. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4556-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4556-5_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5934-3

  • Online ISBN: 978-94-011-4556-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics