Skip to main content

Probing Thermalizing Nuclear Matter with Hard Photons

  • Conference paper
Nuclear Matter in Different Phases and Transitions

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 95))

  • 231 Accesses

Abstract

To study experimentally nuclear matter in its various phases, heavy ions are collided to convert the projectile kinetic energy into compression and heat. By selecting adequately the projectile energy and the violence of the collision, highly excited nuclear matter can thus be formed and studied in its various phases : liquid, gas, hadron gas, or quark-gluon plasma. Such a dynamical exploration of the nuclear phase diagram leaves however nuclear matter in well defined excited states only for fleetingly short instants, challenging their experimental study. Within this context the ideal probe must convey the information of interest to the detector without being affected neither by the collision dynamics nor by final state interactions. It must escape from the nuclear medium without strong interaction, as do electromagnetic particles, and its formation time must decouple from the typical collision time, or, in other words, the probe must be created quasi-instantaneously in a frozen source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nifenecker, H., and Pinston, J.A., (1989) Prog. Part. Nucl. Phys. 23, 71.

    Article  Google Scholar 

  2. Cassing, W., Metag, V., Mosel, U., and Niita, K., (1990) Phys. Rep. 188, 364.

    Article  ADS  Google Scholar 

  3. van Pol, J.H.G., (1995) Dissipation Mechanisms studied with Nuclear Bremsstrahlung, PhD thesis, Rijkuniversiteit Groningen, The Netherlands.

    Google Scholar 

  4. Gudima, K.K., et al. (TAPS Collaboration), (1996) Phys. Rev. Lett. 76, 2412.

    Article  ADS  Google Scholar 

  5. Schutz, Y., et al. (TAPS Collaboration), (1997) Nucl. Phys. A 622, 404.

    Article  ADS  Google Scholar 

  6. Toneev, V.D., and Gudima, K.K., (1983) Nucl. Phys. A 400, 173c.

    Article  ADS  Google Scholar 

  7. Bonasera, A., Gulminelli, F., and Molitoris, J., (1994) Phys. Rep. 243, 1, and references therein.

    Article  ADS  Google Scholar 

  8. Bożek, P., and Ploszajczak, M., (1994), in Gamma Ray and Particle Production in Heavy Ion Reactions, Proc. II TAPS Workshop, Díaz, J., Martinez, G., and Schutz, Y., eds., Guardamar, World Scientific Publ. Co., p. 559.

    Google Scholar 

  9. Bobeldijk, I., et al., (1994) Phys. Rev. Lett. 73, 2684.

    Article  ADS  Google Scholar 

  10. Nifenecker, H., and Bondorf, J.P., (1985) Nucl. Phys. A 442, 478.

    Article  ADS  Google Scholar 

  11. Schäfer, M., Biro, T.S., Cassing, W., Mosel, U., Nifenecker, H., and Pinston, J.A., (1991) Z. Phys. A 339, 391.

    Article  ADS  Google Scholar 

  12. G._Martínez, G., et al. (TAPS Collaboration), (1995) Phys. Lett. B 349, 23.

    Article  ADS  Google Scholar 

  13. Suraud, E., (1994), in Gamma Ray and Particle Production in Heavy Ion Reactions, Proc. II TAPS Workshop, Díaz, J., Martínez, G., and Schutz, Y., eds., Guardamar, World Scientific Publ. Co., p. 187.

    Google Scholar 

  14. Bougault, R., (1997), in Proceedings of the XXXV International Winter Meeting on Nuclear Physics, Iori, I., ed., Bormio.

    Google Scholar 

  15. Marie, N., et al., (1998) Phys. Rev. C 57, in press.

    Google Scholar 

  16. Marqués, F.M., et al. (TAPS Collaboration), Phys. Lett. B 349 (1995) 30.

    Article  ADS  Google Scholar 

  17. Marqués, F.M., Martínez, G., Matulewicz, T., Ostendorf, R.W., and Schutz, Y., (1996) Phys. Rev. C 54, 2783.

    Article  ADS  Google Scholar 

  18. Martínez, G., et al. (TAPS Collaboration), (1994) Phys. Lett. B 334, 23.

    Article  ADS  Google Scholar 

  19. Neuhauser, D., and Koonin, S.E., (1987) Nucl. Phys. A 462, 163.

    Article  ADS  Google Scholar 

  20. Stracener, D.W., et al., (1990) Nucl. Inst. and Meth. A 294, 485.

    Article  ADS  Google Scholar 

  21. SSD is a double annular silicon-strip detector developped at GANIL with azimuthal and polar localization.

    Google Scholar 

  22. Leegte, H.K.W., Koldenhof, E.E., Boonstra, A.L., and Wilschut, H.W., (1992) Nucl. Inst. and Meth. A 313, 26.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Schutz, Y. (1999). Probing Thermalizing Nuclear Matter with Hard Photons. In: Blaizot, JP., Campi, X., Ploszajczak, M. (eds) Nuclear Matter in Different Phases and Transitions. Fundamental Theories of Physics, vol 95. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4556-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4556-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5934-3

  • Online ISBN: 978-94-011-4556-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics