Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 527))

Abstract

The study of synthetic receptors has been of great historical importance to, and continues as a major theme within, the area of supramolecular chemistry. It is significant on a number of levels. Firstly, there are practical applications for receptors in sensing, in separation technology and in phase-transfer catalysis, and potentially in pharmaceuticals and in more sophisticated catalytic systems (“artificial enzymes”). Secondly, the behaviour of synthetic receptors can throw light on biomolecular recognition, and thus answer fundamental questions concerning the functioning of living systems. Thirdly, if the ultimate goal of supramolecular chemistry is to establish engineering through non-covalent interactions, the design and synthesis of receptors provides challenges which stimulate interest and focus efforts, impelling the subject in much the same way that the structures of natural products have encouraged progress in conventional organic synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Footnotes

  1. For general accounts, see: Davis, A.P. (1993) Cholaphanes et al:, Steroids as Structural Components in Molecular Engineering, Chem. Soc. Rev. 22, 243–253; Davis, A.P., Bonar-Law, R.P. and Sanders, J.K.M. (1996) Receptors based on cholic acid, in Comprehensive Supramolecular Chemistry, vol. 4 (Supramolecular Reactivity and Transport: Bioorganic Systems), Y. Murakami (ed.), Pergamon, Oxford, pp. 257–286. Other relevant reviews: Walliman, P., Marti, T., Fürer, A. and Diederich, F. (1997) Steroids in Molecular Recognition, Chem. Rev. 97, 1567; Li, Y. X. and Dias, J. R. (1997) Dimeric and oligomeric steroids, Chem. Rev. 97, 283–304.

    Article  CAS  Google Scholar 

  2. Boyce, R., Li, G., Nestler, H.P., Suenaga, T. and Still, W.C. (1994) Peptidosteroidal receptors for opioid peptides. Sequence-selective binding using a synthetic receptor library, J. Am. Chem. Soc. 116, 7955; Cheng, Y.A., Suenaga, T. and Still, W.C. (1996) Sequence-selective peptide binding with a peptido-A,B-trans-steroidal receptor selected from an encoded combinatorial receptor library, J. Am. Chem. Soc. 118, 1813–1814.

    Article  CAS  Google Scholar 

  3. Bonar-Law, R.P., Mackay, L.G. and Sanders, J.K.M. (1993) Morphine recognition by a porphyrin-cyclocholate molecular bowl, J. Chem. Soc, Chem. Commun., 456.

    Google Scholar 

  4. Hsieh, H.-P., Muller, J.G. and Burrows, C.J. (1994) Structural effects in novel steroidal polyamine-DNA binding, J. Am. Chem. Soc. 116, 12077.

    Article  CAS  Google Scholar 

  5. D’Souza, L.J. and Maitra, U. (1996) Design, synthesis, and evaluation of bile acid-based molecular tweezers, J. Org. Chem. 61, 9494–9502.

    Article  Google Scholar 

  6. Reviews: Dietrich, B. (1993) Design of anion receptors: Applications, Pure and Appl. Chem. 65, 1457; Bianchi, A., Bowman-James, K. and Garcia-Espana, E. (1997) Supramolecular Chemistry of Anions, Wiley-VCH, New York; Schmidtchen, F.P. and Berger, M. (1997) Artificial Organic Host Molecules for Anions, Chem. Rev. 97, 1609–1646.

    Article  CAS  Google Scholar 

  7. For a leading reference to such “inorganic“ solutions, see: Zinn, A.A., Zheng, Z. P., Knobler, C.B. and Hawthorne, M.F. (1996) A hexamethyl derivative of [9]mercuracarborand-3: Synthesis, characterization, and host-guest chemistry, J. Am. Chem.Soc. 118, 70–74.

    Article  CAS  Google Scholar 

  8. Davis, A.P., Gilmer, J.F. and Perry, J.J. (1996) A steroid-based cryptand for halide anions, Angew. Chem., Int. Ed. Engl. 35, 1312–1315.

    Article  CAS  Google Scholar 

  9. Representative examples: (a) Valiyaveettil, S., Engbersen, J.F.J., Verboom, W. and Reinhoudt, D.N. (1993) Synthesis and complexation studies of neutral anion receptors, Angew. Chem., Int. Ed. Engl. 32, 900

    Article  Google Scholar 

  10. Beer, P.D., Gale, P.A. and Husek, D. (1995) A neutral upper to lower rim linked bis-calix[4]arene receptor that recognises anionic guest species, Tetrahedron Lett. 36, 767

    Article  CAS  Google Scholar 

  11. Worm, K. and Schmidtchen, F.P. (1995) Molecular Recognition of Anions by Zwitterionic Host Molecules in Water, Angew. Chem., Int. Ed. Engl. 34, 65–66

    Article  CAS  Google Scholar 

  12. Savage, P.B., Holmgren, S.K. and Gellman, S.H. (1994) Anion and Ion Pair Complexation by a Macrocyclic Phosphine Oxide Disulfoxide, J. Am. Chem. Soc. 116, 4069–4070.

    Article  CAS  Google Scholar 

  13. Davis, A.P., Perry, J.J. and Williams, R.P. (1997) Anion Recognition by Tripodal Receptors Derived from Cholic Acid, J. Am. Chem. Soc. 119, 1793–1794.

    Article  CAS  Google Scholar 

  14. Davis, A.P., Dresen, S. and Lawless, L.J. (1997) Mitsunobu reactions with methanesulfonic acid; The replacement of equatorial hydroxyl groups by azide with net retention of configuration, Tetrahedron Lett. 38, 4305–4308.

    Article  CAS  Google Scholar 

  15. Broderick, S., Davis, A.P. and Williams, R.P. (1998) The “Triamino-analogue” of Methyl Cholate; A Facial Amphiphile and Scaffold with Potential for Combinatorial and Molecular Recognition Chemistry, Tetrahedron Lett. 39, 6083–6086.

    Article  CAS  Google Scholar 

  16. For recently published neutral organic halide receptors, see: Kavallieratos, K., deGala, S.R., Austin, D.J. and Crabtree, R.H. (1997) A readily available non-preorganized neutral acyclic halide receptor with an unusual nonplanar binding conformation, Journal of the American Chemical Society 119, 2325–2326; Jagessar, R.C. and Burns, D.H. (1997) (cis)5,10,15,20-Tetrakis [2(arylurea) phenyl] porphyrins: novel neutral ligands for remarkably selective and exceptionally strong chloride anion complexation in (CD3)2SO, Chem. Commun., 1685–1686; Boerrigter, H., Grave, L., Nissink, J.W.M., Chrisstoffels, L.A.J., vanderMaas, J.H., Verboom, W., deJong, F. and Reinhoudt, D.N. (1998) (Thio)urea resorcinarene cavitands. Complexation and membrane transport of halide anions, J. Org Chem. 63, 4174–4180.

    Article  CAS  Google Scholar 

  17. Dalgliesh, C. (1952) The optical resolution of aromatic amino acids on paper chromatograms, J. Chem. Soc., 3940–3942.

    Google Scholar 

  18. Hannon, C.L. and Anslyn, E.V. (1993) The guanidinium group: its biological role and synthetic analogs, Bioorg. Chem. Frontiers 3, 193.

    Article  CAS  Google Scholar 

  19. Selected relevant examples: (a) Galán, A., Andreu, D., Echavarren, A.M., Prados, P. and de Mendoza, J. (1992) A Receptor for the Enantioselective Recognition of Phenylalanine and Tryptophan under Neutral Conditions, J. Am. Chem. Soc. 114, 1511–1512

    Article  Google Scholar 

  20. Konishi, K., Yahara, K., Toshishige, H., Aida, T. and Inoue, S. (1994) A Novel Anion-Binding Chiral Receptor Based on a Metalloporphyrin with Molecular Asymmetry. Highly Enantioselective Recognition of Amino Acid Derivatives, J. Am. Chem. Soc. 116, 1337–1344

    Article  CAS  Google Scholar 

  21. Sessler, J.L. and Andrievsky, A. (1998) Efficient transport of aromatic amino acids by sapphyrin-lasalocid conjugates, Chem. Eur. J. 4, 159–167.

    Article  CAS  Google Scholar 

  22. See ref. 15b and: de Mendoza, J. and Gago, F. (1994) Molecular recognition of dinucleotides and amino-acids by artifical receptors containing a bicyclic guanidinium unit, in Computational approaches in supramolecular chemistry, G. Wipff (ed.), Kluwer Academic Publishers, pp. 79–99.

    Google Scholar 

  23. Leading references: (a) Sharon, N. and Lis, H. (1995) Lectins — proteins with a sweet tooth: functions in cell recognition, Essays in Biochemistry 30, 59–75

    CAS  Google Scholar 

  24. Weis, W. I. and Drickhamer, K. (1996) Structural basis of lectin-carbohydrate recognition, Ann. Rev. Biochem. 65, 441–473

    Article  CAS  Google Scholar 

  25. Lee, Y.C. and Lee, R.T. (1995) Carbohydrate-protein interactions: basis of glycobiology, Acc. Chem. Res. 28, 321–327.

    Article  CAS  Google Scholar 

  26. It should be noted that carbohydrate recognition through formation of boronates has been remarkably successful. However, it involves covalent bonds and cannot be seen as biomimetic. For reviews, see: James, T.D., Sandanayake, K.R.A.S. and Shinkai, S. (1996) Saccharide sensing with molecular receptors based on boronic acid, Angew. Chem., Int. Ed. Engl. 35, 1911–1922; Smith, B.D. (1996) Liquid membrane transport using boronic acid carriers, Supramolecular Chemistry 7, 55–60.

    Article  CAS  Google Scholar 

  27. Toone, E.J. (1994) Structure and energetics of protein-carbohydrate complexes, Current Opinion in Structural Biology 4, 719–728; Lemieux, R.U. (1996) How water provides the impetus for molecular recognition in aqueous solution, Acc. Chem. Res. 29, 373–380.

    Article  CAS  Google Scholar 

  28. Selected leading references: (a) Anderson, S., Neidlein, U., Gramlich, V. and Diederich, F. (1995) A new family of chiral binaphthyl-derived cyclophane receptors: complexation of pyranosides, Angew. Chem., Int. Ed. Engl. 34, 1596.

    Article  CAS  Google Scholar 

  29. Bonar-Law, R.P. and Sanders, J.K.M. (1995) Polyol recognition by a steroid-capped porphyrin. Enhancement and modulation of misfit guest binding by added water or methanol, J. Am. Chem. Soc. 117, 259.

    Article  CAS  Google Scholar 

  30. Mizutani, T., Kurahashi, T., Murakami, T., Matsumi, N. and Ogoshi, H. (1997) Molecular recognition of carbohydrates by zinc porphyrins: Lewis acid Lewis base combinations as a dominant factor for their selectivity, J. Am. Chem. Soc. 119, 8991–9001.

    Article  CAS  Google Scholar 

  31. Das, G. and Hamilton, A.D. (1997) Carbohydrate recognition: Enantioselective spirobifluorene diphosphonate receptors, Tetrahedron Lett. 38, 3675–3678

    Article  CAS  Google Scholar 

  32. Huang, C.-Y, Cabell, L.A. and Anslyn, E.V. (1994) Molecular recognition of cyclitols by neutral polyaza-hydrogen-bonding receptors: the strength and influence of intramolecular hydrogen bonds between vicinal alcohols, J. Am. Chem. Soc. 116, 2778

    Article  CAS  Google Scholar 

  33. Jiménez-Barbero, J., Junquera, E., Martin-Pastor, M., Sharma, S., Vicent, C. and Penadés, S. (1995) Molecular Recognition Of Carbohydrates Using a Synthetic Receptor — a Model System to Understand the Stereoselectivity Of a Carbohydrate-Carbohydrate Interaction In Water, J. Am. Chem. Soc. 117, 11198–11204.

    Article  Google Scholar 

  34. Bonar-Law, R.P. and Davis, A.P. (1989) Synthesis of Steroidal Cyclodimers from Cholic Acid; A Molecular Framework with Potential for Recognition and Catalysis, J. Chem. Soc, Chem. Commun., 1050.

    Google Scholar 

  35. Aoyama, Y., Tanaka, Y., Toi, H. and Ogoshi, H. (1988) Polar host-guest interaction. Binding of non-ionic polar compounds with a resorcinol-aldehyde cyclooligomer as a lipophilic polar host, J. Am. Chem. Soc. 110, 634.

    Article  CAS  Google Scholar 

  36. Bonar-Law, R.P., Davis, A.P. and Murray, B.A. (1990) Artificial Receptors for Carbohydrate Derivatives, Angew. Chem., Int. Ed. Engl. 29, 1407; Bhattarai, K. M., Bonar-Law, R.P., Davis, A.P. and Murray, B.A. (1992) Diastereo-and Enantio-selective Binding of Octyl Glucosides by a Tetrahydroxycholaphane, J. Chem. Soc, Chem. Commun., 752.

    Article  Google Scholar 

  37. Bhattarai, K.M., Davis, A.P., Perry, J.J., Walter, C.J., Menzer, S. and Williams, D.J. (1997) A New Generation of “Cholaphanes”: Steroid-Derived Macrocyclic Hosts with Enhanced Solubility and Controlled Flexibility, J. Org. Chem. 62, 8463.

    Article  CAS  Google Scholar 

  38. Davis, A.P., Menzer, S., Walsh, J.J. and Williams, D.J. (1996) Steroid-based receptors with tunable cavities; A series of polyhydroxylated macrocycles of varying size and flexibility, Chem. Commun., 453–455.

    Google Scholar 

  39. Quiocho, F.A. (1989) Protein-Carbohydrate interactions: basic molecular features, Pure & Appl. Chem. 61, 1293–1306.

    Article  CAS  Google Scholar 

  40. Taking account of its presence in starch and cellulose, glucose is the world’s most plentiful biomolecule. It is also among the most hydrophilic of carbohydrates. See: Miyajima, K., Machida, K., Taga, T., Homaksu, H. and Nakagaki, M. (1988) Correlation Between the Hydrophobic Nature of Monosaccharides and Cholates, and their Hydrophobic Indices, Journal of the Chemical Society Faraday Transactions 1 84, 2537–2544.

    Article  CAS  Google Scholar 

  41. Davis, A.P. and Wareham, R.S. (1998) A Tricyclic Polyamide Receptor for Carbohydrates in Organic Media, Angew. Chem., Int. Ed. Engl. 37, 2270.

    Article  Google Scholar 

  42. Two earlier systems have been able to dissolve glucose, but both have been essentially micellar in nature. See: Greenspoon, N. and Wachtel, E. (1991) Reverse Micelles as a Model System for Carbohydrate Binding, J. Am. Chem. Soc. 113, 7233–7236; Kobayashi, K., Ikeuchi, F., Inaba, S. and Aoyama, Y. (1992) Accommodation of Polar Guests in Unimolecular Polyamine-Polyhydroxy Cores: Solubilization of Sugars in Apolar Organic Media via Intramolecular Polar Microsolvation, J. Am. Chem. Soc. 114, 1105–1107.

    Article  CAS  Google Scholar 

  43. Franks, F., Lillford, P.J. and Robinson, G. (1989) Isomeric equilibria of monosaccharides in solution; influence of solvent and temperature, J. Chem. Soc, Faraday Trans. 1 85, 2417.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Davis, A.P. (1999). Synthetic Receptors for Anionic and Neutral Substrates. In: Ungaro, R., Dalcanale, E. (eds) Supramolecular Science: Where It Is and Where It Is Going. NATO ASI Series, vol 527. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4554-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4554-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5933-6

  • Online ISBN: 978-94-011-4554-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics