Skip to main content

Low Molecular Weight Gelators for Organic Solvents

From serendipity towards design

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 527))

Abstract

Everyone knows what a gel is, but from a scientific point of view the term gel encompasses chemically very diverse systems. Well known gel systems include, for instance, dilute solutions of polymers, proteins, and surfactants in water and organic solvents. These gel systems are important in medicine, biology, chemistry, and physics, and find many applications in the photographic, cosmetics, food, and petroleum industries [1]. However, as D. Jordan Lloyd already wrote in 1926: ‘The colloidal condition, the “gel”, is one which is easier to recognise than to define,…’. And although an exact definition of a gel is still a., problem, from a topological point of view gels can be defined as dilute mixtures of at least two components, in which both components form a separate continuous phase throughout the system [2]. This definition includes not only gels composed of a solid-like and a liquid phase, but also those composed of a solid and a gas phase (so called aerogels). For most gels a solid-like phase is the minor component which forms a three dimensional network structure within the fluid or gas phase. For solid-fluid gels it can be said that the network structure prevents the fluid from flowing, whereas the liquid phase prevents the network from collapsing [3]. The coexistence of a solid network structure together with a liquid phase distinguishes gels from pure solid, liquid crystalline, or fluid materials and gives gels their unique elastic properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Polymer Gels: Fundamentals and Biomedical Applications, Ed. D. Derossi, K. Kajiwara, Y. Osada, A. Yamauchi, 1991, Plenum Press, New York

    Google Scholar 

  2. J.-M. Guenet, Thermoreversible Gelation of Polymers and Biopolymers, 1992, Academic Press, London

    Google Scholar 

  3. Gels, Ed. F. Kremer, G. Lagaly, Prog..Coll.Polym.Sci., 1996, 102.

    Google Scholar 

  4. P.J. Flory, Disc. Farad. Soc, 1974, 57, 8.

    Google Scholar 

  5. T. Tanaka, Scient. Amer., 1981, 244, 110–123.

    Article  Google Scholar 

  6. For an excellent review see: P. Terech, R.G. Weiss, Chem. Rev., 1997, 97, 3133–3159.

    Article  CAS  Google Scholar 

  7. D. Philp, J. F. Stoddart, Angew. Chem. Int. Ed. Eng., 1996, 35, 1154–1196.

    Article  Google Scholar 

  8. J.H. Fuhrhop, J. Köning, Membranes and Molecular Assemblies: the Synkinetic Approach, Royal Society of Chemistry, Cambridge, 1994; J.M. Lehn, Supramolecular chemistry, VCH, Weinheim, 1995.

    Google Scholar 

  9. G.M. Whitesides, J.P. Mathias, C.T. Seto, Science, 1991, 254, 1312–1319.

    Article  CAS  Google Scholar 

  10. T. Tachibana, T. Mori, K. Hori, Bull. Chem. Soc. Jpn., 1980, 53, 1714–1719.

    Article  CAS  Google Scholar 

  11. R.J. Twieg, T.P. Russll, R. Siemens, J.F. Rabolt, Macromolecules, 1985, 18, 1361–1362.

    Article  CAS  Google Scholar 

  12. M.P. Turberg, J.E. Brady, J. Am. Chem. Soc, 1988, 110, 7797–7801.

    Article  CAS  Google Scholar 

  13. L. Lu,, R.G. Weiss, Chem. Comm., 1996, 2029–2030.

    Google Scholar 

  14. L. Lu, R.G. Weiss, Langmuir. 1995, 11, 3630–3632.

    Article  CAS  Google Scholar 

  15. T. Brotin, R. Utermöhlen, F. Fages, H. Bouas-Laurent, J.-P. Desvergne, J. Chem. Soc. Chem. Comm., 1991, 416–418.

    Google Scholar 

  16. P. Terech, R.G. Ramasseul, F.J. Volino, J. Phys. France, 1985, 46, 895.

    Article  CAS  Google Scholar 

  17. Y.-C Lin, R. G. Weiss, Macromolecules, 1987, 20, 414–417.

    Article  CAS  Google Scholar 

  18. Y.-C Lin, B. Kachar, R.G. Weiss, J. Am. Chem. Soc, 1989, 111, 5542–5551.

    Article  CAS  Google Scholar 

  19. R. Mukkamala, R.G. Weiss, J. Chem. Soc. Chem. Comm., 1995, 375–376.

    Google Scholar 

  20. K. Murata, M. Aoki, T. Nishi, A. Ikeda, S. Shinkai, J. Chem. Soc. Chem. Comm., 1991, 1715.

    Google Scholar 

  21. C.S. Snijder, J.C. de Jong, A. Meetsma, F. Bolhuis, B.L. Feringa, Chem. Eur. J., 1995, 1, 594.

    Article  CAS  Google Scholar 

  22. P. Terech, C. Chachaty. et al. J. Phys. France, 1987, 48, 663.

    Article  CAS  Google Scholar 

  23. R.J.H. Hafkamp,; B.P.A. Kokke, I.M. Danke, H.P.M. Geurts, A.E. Rowan, M.C. Feiters, R.J.M. Nolte, Chem. Comm., 1997, 545–546.

    Google Scholar 

  24. K. Hanabusa, J. Tange, Y. Taguchi, T. Koyama, H. Shirai, J. Chem. Soc. Chem. Comm., 1993, 390–392.

    Google Scholar 

  25. E.J. de Vries, R.M. Kellogg, J. Chem. Soc Chem. Comm., 1993, 238–240.

    Google Scholar 

  26. K. Hanabusa, Y. Matsumoto, T. Miki, T. Koyama, H. Shirai, J. Chem. Soc. Chem. Comm., 1994, 1401–1402.

    Google Scholar 

  27. G.T. Crisp, J. Gore, Synth. Comm., 1997, 27, 2203–2215.

    Article  CAS  Google Scholar 

  28. J.-H. Fuhrhop, P. Schnieder, E. Boekema, W. Helfrich, J. Am. Chem. Soc, 1988, 110, 2861–2867

    Article  CAS  Google Scholar 

  29. S. Yamamoto, J. Chem. Soc. Ind. Jpn., 1943, 46, 279–81 (CA 46, 7047h).

    CAS  Google Scholar 

  30. S. Yamasaki, Y. Ohashi, H. Tsutsumi, K. Tsujii, Bull. Chem. Soc Jpn., 1995, 68, 146–151.

    Article  CAS  Google Scholar 

  31. K. Yoza, Y. Ono, K. Yoshihara, T. Akao, H. Shinmori, M. Takeuchi, S. Shinkai, D.N. Reinhoudt, Chem. Comm., 1998, 8, 907–908.

    Article  Google Scholar 

  32. K. Hanabusa, Y. Naka, T. Koyama, H. Shirai, J. Chem. Soc. Chem. Comm., 1994, 2683–2684

    Google Scholar 

  33. K. Hanabusa, C Koto, M. Kimura, H. Shirai, A. Kakehi, Chem. Lett., 1997, 429–430.

    Google Scholar 

  34. K. Hanabusa, K. Okui, K. Karaki, M. Kimura, H. Shirai, J. Colloid Interface Sci., 1997, 195, 86.

    Article  CAS  Google Scholar 

  35. F.M. Menger, Y. Yamasaki, K.L. Catlin, T. Nishimi, Angew. Chem.Int. ed. Engl., 1995, 34, 585–586.

    Article  CAS  Google Scholar 

  36. U. Keller, K. Müllen, S. De Feyter, F.C. De Schryver, Adv. Mat., 1996, 8, 490–493.

    Article  CAS  Google Scholar 

  37. Y. Yasusa, Y. Takebe, M. Fukumoto, H. Inada, Y. Shirota, Adv. Mat., 1996, 8, 740–741.

    Article  Google Scholar 

  38. M. Jokic, J. Makarevic, M. Zinic, J. Chem. Soc Chem. Comm., 1995, 1732–1724.

    Google Scholar 

  39. H.T. Stock, N.J. Turner, R. McCague, J. Chem. Soc Chem. Comm., 1995, 2063–2064.

    Google Scholar 

  40. Hanabusa, T. Miki, Y. Taguchi, T. Koyama, H. Shirai, J. Chem. Soc Chem. Comm., 1993, 1382–1384.

    Google Scholar 

  41. X. Xu, M. Ayyagari, M. Tata, V.T. John, G.L. McPherson, J. Phys. Chem., 1993, 97, 11350

    Article  CAS  Google Scholar 

  42. M. Tata, V.T. John, Y.Y. Waguespack, G.L. McPherson, J. Am. Chem. Soc, 1995, 116, 9464–9470.

    Article  Google Scholar 

  43. K. Hanabusa, M. Yamada, M. Kimura, H. Shirai, Angew. Chem. Int. Ed. Engl., 1996, 35, 1949–1951

    Article  CAS  Google Scholar 

  44. Y. Yasuda, E. Iishi, H. Inada, Y. Shirota, Chem. Lett., 1996, 575–576.

    Google Scholar 

  45. J. van Esch, R.M. Kellogg, B.L. Feringa, Tet. Lett., 1996, 281–284

    Google Scholar 

  46. J. van Esch, S. de Feyter, R.M. Kellogg, F. De Schryver, B.L. Feringa, Chem. Eur. J., 1997, 3, 1238–1243.

    Article  Google Scholar 

  47. K te Nijenhuis, Adv. Polym. Sci., 1997, 130, 1–252

    Article  Google Scholar 

  48. D.S. Lawrence, T. Jiang, M. Levett, Chem. Rev., 1995, 95, 2229–2260.

    Article  CAS  Google Scholar 

  49. N. Kimizuka, S. Fujikawa, H. Kuwahara, A. Marsh, J.-M. Lehn, J. Chem. Soc. Chem. Comm., 1995, 2103–2104.

    Google Scholar 

  50. S. Hanessian, M. Simard, S. Roelens, J. Am. Chem. Soc, 1995, 117, 7630–7645.

    Article  CAS  Google Scholar 

  51. J.J. Kane, R.-F. Liao, J.W. Lauher, F.W. Fowler, J. Am. Chem. Soc, 1995, 117, 12003–12004.

    Article  CAS  Google Scholar 

  52. F.D. Lewis, J.-S. Yang, C.L. Stern, J. Am. Chem. Soc, 1996, 118, 2772–27739.

    Article  CAS  Google Scholar 

  53. J.C. MacDonald, G.M. Whitesides, Chem. Rev., 1994, 94, 2383–2420; (b)

    Article  CAS  Google Scholar 

  54. C.T. Seto, G.M. Whitesides, J. Am. Chem. Soc, 1990, 112, 6409–6411.

    Article  CAS  Google Scholar 

  55. K.C. Russell, M. Leize, A. Van Dorsselaer, J.M. Lehn, Angew. Chem. Int. Ed. Engl., 1995, 34, 209–213.

    Article  CAS  Google Scholar 

  56. P. Brunet, M. Simard, J.D. Wuest, J. Am. Chem. Soc, 1997, 119, 2737–2738.

    Article  CAS  Google Scholar 

  57. N. Branda, R. Wyler, J. Rebek, Science, 1994, 263, 1267–1268.

    Article  CAS  Google Scholar 

  58. M.R. Ghadiri, J.R. Granja, R.A. Milligan, D.E. McRee, N. Khazanovich, Nature, 1993, 366, 324–326.

    Article  CAS  Google Scholar 

  59. E. Fan, J. Yang, S.J. Geib, T.C. Stoner, M.D. Hopkins, A.D. Hamilton, J. Chem. Soc. Chem. Com., 1995, 1251–1252.

    Google Scholar 

  60. K. Hanabusa, A. Kawakami, M. Kimura, H. Shirai, Chem. Lett., 1997, 191–192.

    Google Scholar 

  61. M.C. Etter, Z. Urbañczyk-Lipkowska, M. Zia-Ebrahimi, T.W. Panunto, J. Am. Chem. Soc, 1990, 112, 8415–8426.

    Article  CAS  Google Scholar 

  62. R.G. Arnold, J.A. Nelson, J.J. Verbanc, Chem. Rev., 1957, 57, 47.

    Article  CAS  Google Scholar 

  63. K. Hanabusa, K. Shimura, K. Hirose, M. Kimura, H. Shirai, Chem. Lett., 1996, 885–886.

    Google Scholar 

  64. Y. Mido, Spectr. Chim. Acta, 1972, 28A, 1503–1518.

    Article  Google Scholar 

  65. D.A. Frankel, D.F. O’Brien, J. Am. Chem. Soc, 1994, 116, 10057–10069.

    Article  CAS  Google Scholar 

  66. S. De Feyter, P.C.M. Grim, M. Rucker, P. Vanoppen, C. Meiners, M. Sieffert, S. Valiyaveettil, K. Mullen, F.C. De Schryver, Angew. Chem. Int. Ed. Engl., 1998, 37, 1223–1226.

    Article  Google Scholar 

  67. S. De Feyter, M. Ruecker, K. Grim, P. Vanoppen, J. van Esch, B. L. Feringa, R.M. Kellogg, F. De Schrijver, J. Phys. Chem., in press.

    Google Scholar 

  68. F. Schoonbeek, J. van Esch, M. de Loos, R. M. Kellogg, B. L. Feringa, Chem. Eur. J., in press.

    Google Scholar 

  69. A.H. Clark, S.B. Ross-Murphy, Adv. Coll. Sci., 1987, 83, 57–192

    CAS  Google Scholar 

  70. N. Willenbacher, J. Coll. Inter. Sci., 1996, 182, 501–510

    Article  CAS  Google Scholar 

  71. G. Liu, B. White, I. Vancsã-Szmercsányi, G. J. Vancso, J. Polym. Sci.B: Polym. Phys., 1996, 34, 277–282.

    Article  CAS  Google Scholar 

  72. M. T. Reetz, A. Zonta, J. Simpelkamp, Angew. Chem. Int. Ed. Engl., 1995, 34, 301–303

    Article  CAS  Google Scholar 

  73. M.T. Reetz, Adv. Mat., 1997, 9, 943–954.

    Article  CAS  Google Scholar 

  74. Y. Osada, S.B. Ross-Murphy, Scient. Amer., 1993, May, 42–47; see also R. Dagani, Chem.Eng.News, 1997, June 9, 26–36.

    Google Scholar 

  75. A. Aggeli, M. Bell, N. Boden, J.N. Keen, P.F. Knowles, T.C.B. Leish, M. Pitkeathly, S.E. Radford, Nature, 1997, 386, 359–363.

    Article  Google Scholar 

  76. K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda, S. Shinkai, J. Am. Chem. Soc, 1994, 116, 6664–6676.

    Article  CAS  Google Scholar 

  77. T. Kato, G. Kondo, K. Hanabusa, Chem. Lett., 1998, 193–194.

    Google Scholar 

  78. W. Gu, L. Lu, G.B. Chapman, R.G. Weiss, Chem. Comm., 1997, 543–544.

    Google Scholar 

  79. M. de Loos, J. van Esch, I. Stokroos, R.M. Kellogg, B.L. Feringa, J. Am. Chem. Soc, 1997, 119, 12675–12676; See also M. Jacoby, Chem.Eng.News, 1998, January 26, 34–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Van Esch, J., Schoonbeek, F., De Loos, M., Marc Veen, E., Kellogg, R.M., Feringa, B.L. (1999). Low Molecular Weight Gelators for Organic Solvents. In: Ungaro, R., Dalcanale, E. (eds) Supramolecular Science: Where It Is and Where It Is Going. NATO ASI Series, vol 527. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4554-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4554-1_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5933-6

  • Online ISBN: 978-94-011-4554-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics