Skip to main content
  • 144 Accesses

Abstract

Twenty eight years ago, Haroche et al. [1] published measurements of Zee-man hyperfine spectra of Hydrogen and Rubidium atoms that were subjected to not only a static magnetic field B, but also to an additional oscillating magnetic field B1cos(ωt). The latter was applied perpendicular to the static field; the oscillation frequency ω was small compared to the hyperfine separations, but large compared to the Lamor precession frequencies. These experiments demonstrated that the Landé factors gF of the bare hyperfine levels F are drastically modified by the high-frequency magnetic field; they become

$$ {\bar g_F} = {g_F}{J_0}\left( {\frac{{{g_F}{\mu _B}{B_1}}}{{\hbar \omega }}} \right), $$
(1)

where μB is the Bohr magneton, and J 0 denotes the ordinary Bessel function of order zero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haroche S., Cohen-Tannoudji C., Audoin, C. and Schermann, J.P. (1970) Phys. Rev. Lett. 24, 861

    Article  ADS  Google Scholar 

  2. Cohen-Tannoudji, C. (1994) Atoms in Electromagnetic Fields, p. 119. World Scientific, Singapore.

    Google Scholar 

  3. Shirley, J.H. (1965) Phys. Rev. 138, B 979

    Article  ADS  Google Scholar 

  4. Zel’dovich, Ya.B. (1967) Sov. Phys. JETP 24, 1006

    ADS  Google Scholar 

  5. Breuer H.P. and Holthaus, M. (1989) Z. Phys. D 11, 1

    Article  ADS  Google Scholar 

  6. Breuer H.P. and Holthaus, M. (1991) Ann. Phys. (N.Y.) 211, 249

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Sambe, H. (1973) Phys. Rev. A 7, 2203

    Article  ADS  Google Scholar 

  8. Holthaus, M. (1992) Phys. Rev. Lett. 69, 1596

    Article  ADS  Google Scholar 

  9. Grossmann F., Jung P., Dittrich, T. and Hanggi, P. (1991) Z. Phys. B 84, 315

    Article  ADS  Google Scholar 

  10. Grifoni M. and Hänggi P. (1998) Phys. Rep. (in press)

    Google Scholar 

  11. Bastard, G. (1988) Wave Mechanics Applied to Semiconductor Heterostructures. Les Éditions de Physique, Les Ulis.

    Google Scholar 

  12. Fukuyama H., Bari, R.A. and Fogedby, H.C. (1973) Phys. Rev. B 8, 5579

    Article  ADS  Google Scholar 

  13. W.V. Houston (1940) Phys. Rev. 57, 184

    Article  MathSciNet  ADS  Google Scholar 

  14. J. Zak (1993) Phys. Rev. Lett. 71, 2623

    Article  ADS  Google Scholar 

  15. Faisal, F.H.M. and Kamiński, J.Z. (1996) Phys. Rev. A 54, R1769

    Article  ADS  Google Scholar 

  16. Holthaus, M. (1992) Phys. Rev. Lett. 69, 351

    Article  ADS  Google Scholar 

  17. Dunlap, D.H. and Kenkre, V.M. (1986) Phys. Rev. B 34, 3625

    Article  ADS  Google Scholar 

  18. Ignatov, A.A., Schomburg E., Grenzer J., Renk, K.F. and Dodin, E.P. (1995) Z. Phys. B 98, 187

    Article  ADS  Google Scholar 

  19. Meier T., Von Plessen G., Thomas, P. and Koch, S.W. (1995) Phys. Rev. B 51, 14490

    Article  ADS  Google Scholar 

  20. Meier T., Rossi F., Thomas, P. and Koch, S.W. (1995) Phys. Rev. Lett. 75, 2558

    Article  ADS  Google Scholar 

  21. Keay, B.J., Zeuner S., Allen Jr., S.J., Maranowski, K.D., Gossard, A.C., Bhattacharya, U. and Rodwell, M.J.W. (1995) Phys. Rev. Lett. 75, 4102

    Article  ADS  Google Scholar 

  22. Hone D.W. and Holthaus, M. (1993) Phys. Rev. B 48, 15123

    Article  ADS  Google Scholar 

  23. Holthaus, M. and Hone, D.W. (1996) Phil. Mag. B 74, 105

    Article  Google Scholar 

  24. Anderson, P.W. (1958) Phys. Rev. 109, 1492

    Article  ADS  Google Scholar 

  25. Thouless, D.J. (1974) Phys. Rep. 13, 93

    Article  ADS  Google Scholar 

  26. Holthaus M., Ristow, G.H. and Hone, D.W. (1995) Phys. Rev. Lett 75, 3914

    Article  ADS  Google Scholar 

  27. Holthaus M., Ristow, G.H. and Hone, D.W. (1995) Europhys. Lett. 32, 241

    Article  ADS  Google Scholar 

  28. Drese, K. and Holthaus, M. (1996) J. Phys.: Condens. Matter 8, 1193

    Article  ADS  Google Scholar 

  29. Mader, K.A., Wang, L.-W. and Zunger, A. (1995) Phys. Rev. Lett. 74, 2555

    Article  ADS  Google Scholar 

  30. Sokoloff, J.B. (1985) Phys. Rep. 126, 189

    Article  ADS  Google Scholar 

  31. Drese, K. and Holthaus, M. (1997) Phys. Rev. Lett. 78, 2932

    Article  ADS  Google Scholar 

  32. Drese, K. and Holthaus, M. (1997) Chem. Phys. 217, 201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Holthaus, M. (1999). Coherent Control of Quantum Localization. In: Pötz, W., Schroeder, W.A. (eds) Coherent Control in Atoms, Molecules, and Semiconductors. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4552-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4552-7_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5932-9

  • Online ISBN: 978-94-011-4552-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics