Skip to main content

Evaluation of Experimental Data: Lineshape and Goodness of Fit

  • Chapter
  • 312 Accesses

Part of the book series: NATO Science Series ((ASHT,volume 66))

Abstract

All the fitting procedures, irrespective of the chosen optimization algorithm and of all the intriguing details involved [1, 2, 3, 4], have in common two steps: 1) the initial choice of a proper fitting model, and 2) the final evaluation of the agreement between the model and the experimental data, i.e. the goodness of the fit.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. (1992) Numerical Recipes in Fortran. The Art of Scientific Computing 2nd edition, Cambridge University Press.

    Google Scholar 

  2. Walsh G.R. (1977) Methods of Optimization John Wiley Sons.

    Google Scholar 

  3. Nash J.C. (1990) Compact Numerical Methods for Computers 2nd edition, Adam Hilger, Bristol and New York.

    Google Scholar 

  4. Box G.E.P. and Tiao G.C. (1973) Bayesian Inference in Statistical Analysis Addison-Wesley.

    Google Scholar 

  5. Brandt S. (1983) Statistical and Computational Methods in Data Analysis, North Holland Publishing Company.

    Google Scholar 

  6. Knoll G.F. (1979) Radiation Detection and Measurement John Wiley & Sons.

    Google Scholar 

  7. Taylor J.R. (1982) An introduction to Error analysis. The Study of Uncertainties in Physical Measurements, University Science Books, Mill Valley, California.

    Google Scholar 

  8. Ruby S.L. (1973) Why Misfit if you already have y2in I.J. Gruverman, C.W. Seidel and D.K. Dieterly (eds.) Mössbauer Effect Methodology Plenum Press, New York, Vol. 8, pp. 263–276.

    Chapter  Google Scholar 

  9. Waychunas G.A. (1986) Performance and use of Mössbauer goodness-of-fit parameters: Response to spectra of varying signal/noise ratio and possible misinterpretation Am. Mineral. 71, 1261–1265.

    CAS  Google Scholar 

  10. Dollase W.A. (1975) Statistical limitation of Mössbauer spectral fitting American Mineralogist 60, 257–264

    Google Scholar 

  11. Miglierini M. (1993) Dispersion versus Absorption (DIPSA): a criterion for validity of fitting models in Mössbauer spectroscopy. I theory and simulations Acta. Phys. Slov. 3, 207–220.

    Google Scholar 

  12. Spiegel M. R. (1994) Statistics 2nd edition, McGraw-Hill.

    Google Scholar 

  13. Pedrazzi G., manuscript in preparation.

    Google Scholar 

  14. Margulies S. and Ehrman J.R. (1961) Transmission and line broadening of resonance radiation incident on a resonant absorber Nucl. Instr. and Meth. 12, 131–137.

    Article  Google Scholar 

  15. Lang G. (1963) Interpretation of experimental Mössbauer spectral Areas Nucl. Instr. and Meth. 24, 425–428.

    Article  CAS  Google Scholar 

  16. Ure M. C. D. and Flinn P.A. (1971), in I.J. Gruverman, C.W. Seidel and D.K. Dieterly (eds.) Mössbauer Effect Methodology, Plenum Press, New York, Vol. 7, pp. 245–262

    Google Scholar 

  17. Lin T.M. and Preston R.S. (1974) Comparison of techniques for folding and unfolding Mössbauer spectra for data analysis in I.J. Gruverman, C.W. Seidel and D.K. Dieterly (eds.), Mössbauer. Effect Methodology, Plenum Press, New York, Vol. 9, pp. 205–223.

    Chapter  Google Scholar 

  18. Rancourt D.G. (1989), Accurate site population from Mössbauer spectroscopy Nucl. Instr. and Meth. B44, 199–210.

    CAS  Google Scholar 

  19. Rancourt D.G., McDonald A.M., Lalonde A.E., and Ping J.Y. (1993) Mössbauer absorber thicknesses for accurate site population in Fe-bearing minerals American Mineralogist 78, 1–7.

    CAS  Google Scholar 

  20. Ping Y.J. and Rancourt D.G. (1992) Thickness effects with intrinsically broad absorption lines Hyperfine Interactions 71, 1433–1436.

    Article  CAS  Google Scholar 

  21. Marup S. and Both E. (1975) Interpretation of spectra with broadened lines Nucl. Instr. and Meth. 124, 445–448.

    Article  Google Scholar 

  22. Cai S.Z., Pedrazzi G., Ortalli I., manuscript in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pedrazzi, G., Cai, S.Z., Ortalli, I. (1999). Evaluation of Experimental Data: Lineshape and Goodness of Fit. In: Miglierini, M., Petridis, D. (eds) Mössbauer Spectroscopy in Materials Science. NATO Science Series, vol 66. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4548-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4548-0_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5641-7

  • Online ISBN: 978-94-011-4548-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics