Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 66))

Abstract

Pressure is the most effective method available to solid-state scientists to alter many properties of matter. Since its implementation by Bridgman in the beginning of this century, high pressure (HP) research has provided substantial information, in all aspects, on properties of matter. Today, as a result of the development of static high pressure devices based on thediamond-anvil cell (DAC) experimenters can reach pressures in the megabar region corresponding to generatingenergy densities in matter of the order of eV/Å3. With such energy densities insulators with gap energies in the eV regions become metals, new structural and electronic phases become stable and new aspects of magnetism are being revealed. In other words the DAC has become a most powerful ultra-high-pressure device, helping scientists discover new states of matter. Some of the modern DAC’s for generating pressures into the megabar region can fit into the palm of the hand (see Fig. 1) and allow a variety of sophisticated measurements to be performed even though samples are of almostmicroscopic dimensions. The principle underlying the DAC, its potential applications, and pressure calibrations are thoroughly described in the review paper by Jayaraman [2].

A photograph of a miniature piston/cylinder DAC contrasting its miniature size with a US 250 coin and capable of reaching static pressures of 140 GPa [Ref. [1]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Machavariani, G.Yu., Pasternak, M.P., Hearne, G.R., and Rozenberg, G.Kh. (1998)Rev. Sci. Instrum. 69, 1423.

    Article  CAS  Google Scholar 

  2. Jayaraman, A. (1983) Rev. Modern. Phys. 55, 65.

    Article  CAS  Google Scholar 

  3. Sterer, E., Pasternak, M.P., and Taylor, R.D. (1990) Rev. Sci. Instrum. 61, 1117.

    Article  CAS  Google Scholar 

  4. Hanks, R.V. (1961)Phys. Rev. 124, 1319.

    Article  CAS  Google Scholar 

  5. Pound, R.V., Benedek, G.B., and Dreyer, R. (1961) Phys. Rev.Letters 7, 405.

    Article  Google Scholar 

  6. Holzapfel Wilfried B. (1975) inCRC Critical Reviews in Solid State Sciences p 89.

    Google Scholar 

  7. Pasternak, M.P. and Taylor, R.D. (1996)High Pressure Mössbauer Spectroscopy: The Second Generation in G. Long and F. Grandjean (eds).,Mössbauer Spectroscopy Applied to Magnetism and Materials Science, Vol. 2, Plenum Press, New York, p167.

    Google Scholar 

  8. The maximum pressure reported with a 300 ism culet anvil using o/p DACs was 90 GPa (Ref 11).

    Google Scholar 

  9. Hearne, G.R., Pasternak, M.P., and Taylor, R.D. (1994) Rev. Sci. Inst. 65, 3787.

    Article  CAS  Google Scholar 

  10. Pasternak, M.P., Taylor, R.D., Chen, A., Meade, C.,. Falicov, L.M, Giesekus, A., Jeanloz, R., and Yu, P.Y. (1990) Phys. Rev. Letters 65, 790 and references therein.

    Article  Google Scholar 

  11. Pasternak, M.P., Taylor, R.D., Jeanloz, R., Li, X., Nguyen, J.H., and McCammon, C.A. (1997)Phys.Rev.Letters 79, 5046.

    Article  CAS  Google Scholar 

  12. DeMarco, J. et al. (1978), Phys. Rev. B18, 3968.

    Google Scholar 

  13. Xu, W., Naaman, O., Rozenberg, G.Kh., Machavariani, G.Yu, Pasternak, M.P., and Taylor, R.D. (1998), to be published

    Google Scholar 

  14. Bocquet, A.E., Saitoh, T., Mizokawa, T., and Fujimori, A. (1992), Solid St. Comm. 83, 11.

    Article  CAS  Google Scholar 

  15. Mizokawa, T., Namatame, H., Fujimori, A., Akeyama, K., Kondoh, H., Kuroda, H., and Kosugi, N. (1991), Phys. Rev. Lett 67, 1638.

    Article  CAS  Google Scholar 

  16. Rozenberg, G. Kh., Milner, A. P., Pasternak, M. P., Hearne, G. R., and Taylor, R. D. (1998), accepted for publication inPhys. Rev. B.

    Google Scholar 

  17. Adler, P. (1994), J. Sol. State Chem. 108, 275.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pasternak, M.P., Taylor, R.D. (1999). High Pressure Mössbauer Spectroscopy. In: Miglierini, M., Petridis, D. (eds) Mössbauer Spectroscopy in Materials Science. NATO Science Series, vol 66. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4548-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4548-0_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5641-7

  • Online ISBN: 978-94-011-4548-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics