Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 215))

  • 187 Accesses

Abstract

Magnetic resonance imaging (MRI) is an extremely useful tool to study congenital heart disease as it has the main advantages of both echocardiography and conventional angiography1,2,3. Like echocardiography, MRI is a noninvasive technique providing accurate morphological information on the heart and, as angiography, it allows the study of extracardiac vascular structures. This latter characteristic is very important, because it permits evaluation of the ventriculo-arterial connections, the position and relationship between the great arteries and the drainage of the systemic and pulmonary veins4. An additional advantage of MRI that should be noted is its excellent image quality in the majority of patients, including adults5 and those who have been submitted to surgical cardiac correction, as it does not require a particular window to obtain images6, neither has it limitations in the orientation of views, and it can produce images in any desired plane of the heart7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Higgins ChB, Byrd BF, Farmer DW, Osaki L, Silverman NH, Cheitlin MD. Magnetic resonance imaging in patients with congenital heart disease. Circulation 1984; 70: 851–60.

    Article  PubMed  CAS  Google Scholar 

  2. Chung KJ, Simpson IA, Newman R. Sahn DJ, Sherman FS, Hesselink JR. Cine magnetic resonance imaging for evaluation of congenital heart disease: role in pediatric cardiology compared with echocardiography and angio-graphy.J Pediatr 1988; 113: 1.028–1.035.

    Google Scholar 

  3. Simpson IA, Sahn DJ, Chung KJ. Noninvasive evaluation of congenital heart disease: Doppler ultrasound or magnetic resonance imaging. Echocardiography 1986; 6: 125–9.

    Article  Google Scholar 

  4. Weinberg PM, Fogel MA. Cardiac MR imaging in congenital heart disease. Cardiol Clin 1998; 16: 315–48.

    Article  PubMed  CAS  Google Scholar 

  5. Hartneil GG, Cohen MC, Meier RA, Finn JP. Magnetic resonance angiography demonstration of congenital heart disease in adults. Clin Radiol 1996; 51: 851–7.

    Article  Google Scholar 

  6. Hirsch R, Kilner PJ, Conelly MS, Redington AN, St John Sutton MG, Sommerville J. Diagnosis in adolescents and adults with congenital heart disease. Prospective assessment of individual and combined roles of magnetic resonance imaging and transesophageal echocardiography. Circulation 1994; 90: 2.937–2.951.

    Article  Google Scholar 

  7. Boothroyd A. Magnetic resonance. Its current and future role in paediatric cardiac radiology. Eur J Radiol 1998; 26: 154–62.

    Article  PubMed  CAS  Google Scholar 

  8. Kersting-Sommerhoff BA, Diethelnrt, Stanger P, et al. Evaluation of complex congenital ventricular anomalies with magnetic resonance imaging. Am Heart J 1990; 120: 133–42.

    Article  PubMed  CAS  Google Scholar 

  9. Masui T, Seelos KC, Kersting-Sommerhoff BA, Higgins ChB. Abnormalities of the pulmonary veins: evaluation with MR imaging and comparison with cardiac angiography and echocardiography. Radiology 1991; 181: 645–9.

    PubMed  CAS  Google Scholar 

  10. Julsrud PR, Ehman RL. The “broken ring” sign in magnetic resonance imaging of partial anomalous pulmonary venous connection to the superior vena cava. Mayo Clin Proc 1985; 60: 874–9.

    Article  PubMed  CAS  Google Scholar 

  11. Wight CM, Barrat-Boyes BG, Calder AL, Neutze JM, Brandt PW Total anomalous pulmonary venous connection: long-term results following repair in infancy. J Thorac Cardiovasc Sur 1977; 75: 52–63.

    Google Scholar 

  12. Katz NM, Kirklin JW, Pacifico AD. Concepts and practices in surgery for total anomalous pulmonary venous connection. Ann Thorac Surg 1978; 25: 479–87.

    Article  PubMed  CAS  Google Scholar 

  13. Gomes AS, Lois JF, Williams RG. Pulmonary arteries: MR imaging in patients with congenital obstruction of the right ventricular outflow tract. Radiology 1990; 174: 51–7.

    PubMed  CAS  Google Scholar 

  14. Parsons JM, Baker EJ, Anderson RH, et al. Morphological evaluation of atrioventricular septal defects by magnetic resonance imaging. Br Heart J 1990; 64: 138–45.

    Article  PubMed  CAS  Google Scholar 

  15. Diethelm L, Dery R, Lipton MJ, Higgins CB. Atrial-level shunts: sensitivity and specificity of MR diagnosis. Radiology 1987; 162: 181–6.

    PubMed  CAS  Google Scholar 

  16. Rees S, Firmin D, Mohiaddin R, Underwood R, Longmore D. Application of flow measurements by magnetic resonance velocity mapping to congenital heart disease. Am J Cardiol 1989; 64: 953–6.

    Article  PubMed  CAS  Google Scholar 

  17. Brenner LD, Caputo GR, Mostbeck G, et al. Quantification of left to right atrial shunts with velocity-encoded cine nuclear magnetic resonance imaging. J Am Coll Cardiol 1992; 20: 1.246–1.250.

    Article  Google Scholar 

  18. Baker EJ, Ayton V, Smith MA, et al. Magnetic resonance imaging at a high field strength of ventricular septal defects in infants. Br Heart J 1989; 62: 305–10.

    Article  PubMed  CAS  Google Scholar 

  19. Didier D, Higgins CB. Identification and localization of ventricular septal defect by gated magnetic resonance imaging. Am J Cardiol 1986; 57: 1.363–1.368.

    Article  Google Scholar 

  20. Wemnk ACG, Ottenkamp J, Guit GL, Draulans Noe HA, Doornbos J. Correlation of morphology of the left ventricular outflow tract with two-dimensional Doppler echocardiography and magnetic resonance imaging in atrioventricular septal defect. Am J Cardiol 1989; 63: 1.137–1.140.

    Google Scholar 

  21. Chien CT, Lin CS, Hsu YH, Lin MC, Chen KS, Wu DJ. Potential diagnosis of hemodynamic abnormalities in patent ductus arteriosus by cine magnetic resonance imaging. Am Heart J 1991; 122: 1.065–1.072.

    Google Scholar 

  22. Kilner PJ, Firmin DN, O’Rees RS, et al. Valve and great vessels stenosis: assessment with MR jet velocity mapping. Radiology 1991; 178: 229–35.

    PubMed  CAS  Google Scholar 

  23. Markiewicz W Sechtem U, Higgins CB. Evaluation of the right ventricle by magnetic resonance imaging. Am Heart J 1987; 113: 8–14.

    Article  PubMed  CAS  Google Scholar 

  24. Wesley Vick III G, Rokey R, Huhta JC, Mulvagh SL, Johnston DL. Nuclear magnetic resonance imaging of the pulmonary arteries, subpul-monary region, and aortopulmonary shunts: a comparative study with two-dimensional echocardiography and angiography. Am Heart J 1990; 119: 1.103–1.110.

    Google Scholar 

  25. Baker EJ, Ayton V, Smith MA, et al. Magnetic resonance imaging at high field strength of ventricular septal defects in infants. Br Heart J 1989; 62: 97–101.

    Article  PubMed  CAS  Google Scholar 

  26. Teien DE, Wendel H, Björnebrink J, Ekelund L. Evaluation of anatomical obstruction by Doppier echocardiography and magnetic resonance imaging in patients with coarctation of the aorta. Br Heart J 1993; 69: 352–5.

    Article  PubMed  CAS  Google Scholar 

  27. Mirowitz SA, Gutierrez FR, Canter CE, Vannier MW Tetralogy of Fallot: MR imaging. Radiology 1989; 171: 207–12.

    PubMed  CAS  Google Scholar 

  28. Sechtem U, Jungehülsing M, de Vivie R, Mennicken U, Höpp HW Left hemitruncus in adulthood: diagnostic role of magnetic resonance imaging. Eur Heart J 1991; 12: 1.040–1.044.

    Google Scholar 

  29. Mustard WT. Successful two-stage correction of transposition of the great vessels. Surgery 1964; 55: 469–72.

    PubMed  CAS  Google Scholar 

  30. Senning A. Surgical correction of transposition of the great vessels. Surgery 1959; 45: 966–9.

    PubMed  CAS  Google Scholar 

  31. Campbell RM, Moreau GA, Johns JA, et al. Detection of caval obstruction by magnetic resonance imaging after intraatrial repair of transposition of the great arteries. Am J Cardiol 1987; 60: 688–91.

    Article  PubMed  CAS  Google Scholar 

  32. Jatene AD, Fontes VF, Souza LCB, Paulista PPA, Abdulmassih N, Soussa JEMR. Anatomic correction of transposition of the great arteries. J Thorac Cardiovasc Surg 1982; 83: 20–6.

    PubMed  CAS  Google Scholar 

  33. Fogel MA, Donofrio MT, Ramaciotti C, Hubbard AM, Weinberg PM. Magnetic resonance and echocardiographic imaging of pulmonary artery size throught stages of Fontan reconstruction. Circulation 1994; 90: 2.927–2.936.

    Article  Google Scholar 

  34. Julsrud PR, Ehmann RL, Hagler DJ, Ilstrup DM. Extracardiac vasculature is candidate for Fontan surgery: MR imaging. Radiology 1989; 173: 503–6.

    PubMed  CAS  Google Scholar 

  35. Canter E, Gutierrez FR, Molina P Hartmann AF, Spray TL. Noninvasive diagnosis of right-sided extracardiac conduit obstruction by combined magnetic resonance imaging and continuous-wave Doppler echocardiography. J Thorac Cardiovasc Surg 1991; 101: 724–31.

    PubMed  CAS  Google Scholar 

  36. Donelly LF, Strife JL, Bailey WW. Extrinsic airway compresion secondary to pulmonary arterial conduits: MR findings. Pediatr Radiol 1997; 27: 268–70.

    Article  Google Scholar 

  37. Rebergen SA, Ottenkamp J, Doornbos J, van der Wall EE, Chin JGJ, de Roos A. Postoperative pulmonary flow dynamics after Fontan surgery: assessment with nuclear magnetic resonance velocity mapping. J Am Coll Cardiol 1993; 21: 123–31.

    Article  PubMed  CAS  Google Scholar 

  38. Huggon IC, Baker EJ, Maisey MN, et al. Magnetic resonance imaging of hearts with atrioventricular valve atresia or double inlet ventricle. Br Heart J 1992; 68: 313–9.

    Article  PubMed  CAS  Google Scholar 

  39. Yoo SJ, Lim TH, Park IS, et al. MR anatomy of ventricular septal defect in double-outlet right ventricle with situs solitus and atrioventricular concordance. Radiology 1991; 181: 501–5.

    PubMed  CAS  Google Scholar 

  40. Jacobstein MD, Fletcher BD, Nelson D, Clampitt M, Alfidi RJ, Riemenschneider TA. Magnetic resonance imaging: evaluation of palliative systemic-pulmonary artery shunts. Circulation 1984; 70: 650–6.

    Article  PubMed  CAS  Google Scholar 

  41. Simpson IA, Valdes-Cruz LM, Berthoty DP et al. Cine magnetic resonance imaging and color Doppler flow mapping in infants and children with pulmonary artery bands. Am J Cardiol 1993; 71: 1.419–1.426.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Subirana-Doménech, M., Borrás-Pérez, X. (1999). Congenital heart disease. In: Atlas of Practical Cardiac Applications of MRI. Developments in Cardiovascular Medicine, vol 215. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4544-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4544-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5931-2

  • Online ISBN: 978-94-011-4544-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics