Skip to main content

Exact Solution of Random Tiling Models

  • Chapter
  • 717 Accesses

Part of the book series: NATO Science Series ((ASIC,volume 530))

Abstract

The quasicrystalline state of matter and the role of quasiperiod-icity are is discussed. Both energetic and entropic mechanisms may stabilize the quasicrystalline phase. For systems where entropy plays the dominant role, random tiling models are the appropriate description. These are discrete statistical models, without an underlying lattice. Several, though very few, quasicrystalline random tilings have been solved exactly, in the sense that the free energy has been calculated analytically in the thermodynamic limit. The models have besides a quasicrystalline phase also incommensurate phases of which the rotation symmetry is that of an ordinary crystal. The quasicrystalline phase maximizes the entropy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Shechtman, I. Blech, D. Gratias, and J.W. Cahn (1984) Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 51, p 1953.

    Google Scholar 

  2. C. Janot (1994) Quasicrystals — a primer, 2nd. ed., Clarendon Press, (Oxford 1994).

    Google Scholar 

  3. P. Guyot, P. Kramer and M. de Boissieu (1991) Quasicrystals. Rep. Prog. Phys. 54, p. 1373.

    Article  ADS  Google Scholar 

  4. R. Penrose (1974) The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl. 10, p. 266.

    Google Scholar 

  5. N. G. de Bruijn (1981) Algebraic theory of Penrose’s non-periodic tilings of the plane. Proc. Konink. Nederl. Akad. Wetensch. A84, p. 39.

    Google Scholar 

  6. R. Penrose (1989) Tilings and Quasicrystals; a non-local growth problem? in Aperiodicity and order Vol. 2: Introduction to the mathematics of quasicrystals, ed. M.V. Jaric, (Academic Press, 1989), p. 53.

    Google Scholar 

  7. V. Elser (1985) Comment on“Quasicrystals: a new class of ordered structures”. Phys. Rev. Lett. 54, p. 1730, and: Indexing problems in quasicrystals diffraction. Phys. Rev. B 32 p.4892.

    Article  ADS  Google Scholar 

  8. C. Richard, M. Höpfe, J. Hermission and M. Baake (1998) Random tilings: concepts and examples. J. Phys. A 31, p. 6385.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. M. Widom, D.p. Deng and C.L. Henley (1989) Transfer-matrix analysis of a two-dimensional quasicrystal. Phys. Rev. Lett. 63, p.310.

    Article  ADS  Google Scholar 

  10. K.J. Strandburg, L.H. Tang and M.V. Jaric (1989) Phason elasticity in entropic quasicrystals. Phys. Rev. Lett. 63, p.314.

    Article  ADS  Google Scholar 

  11. W. Li, H. Park and M. Widom (1992) Phase Diagram of a Random Tiling Quasicrystal, J. Stat. Phys. 66, p. 1.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. D. Levine and P.J. Steinhardt (1984) Quasicrystals, a new class of ordered materials. Phys. Rev. Lett. 53, p. 2477.

    Article  ADS  Google Scholar 

  13. C.L. Henley (1991a) Cell geometry for cluster based quasicrystal models. Phys. Rev. B 43, p. 993.

    Article  ADS  Google Scholar 

  14. C.L. Henley (1991b) Random tiling models, Chapter 15 in Quasicrystals the state of the art, ed. P.J. Steinhardt and D.p. Di Vincenzo. (World Scientific, 1991).

    Google Scholar 

  15. H. Kawamura (1983) Statistics of a two-dimensional Amorphous Lattice. Proc. Theor. Phys. 70, p. 352.

    Article  MathSciNet  ADS  Google Scholar 

  16. M. Oxborrow and C.L. Henley (1993) Random square-triangle tilings, a model of 12-fold quasicrystals, Phys. Rev. B 48 p. 6966.

    Article  ADS  Google Scholar 

  17. C.L. Henley (1988) Random tilings with quasicrystal order: transfer-matrix approach, J. Phys. A 21, p. 1649.

    Google Scholar 

  18. M. Widom (1993) Bethe Ansatz solution of the square-triangle random tiling model. Phys. Rev. Lett. 70, p. 2094.

    Google Scholar 

  19. R.J. Baxter (1982) Exactly solved models in Statistical Mechanics, (Academic Press, London 1982).

    MATH  Google Scholar 

  20. P.A. Kalugin (1994) The square-triangle random-tiling model in the thermodynamic limit. J. Phys. A 27, p. 3599.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. J. de Gier and B. Nienhuis (1997a) Integrability of the square-triangle random tiling model. Phys. Rev. E 55, p. 3926.

    Article  MathSciNet  ADS  Google Scholar 

  22. J. de Gier and B. Nienhuis (1997b) The exact solution of an octagonal rectangle-triangle random tiling. J. Stat. Phys. 87, p. 415.

    Article  ADS  MATH  Google Scholar 

  23. J. de Gier and B. Nienhuis (1998) Bethe Ansatz solution of a decagonal rectangle triangle random tiling. J. Phys. A. 31, p. 2141.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. p. A. Kalugin (1997) Low-lying excitations in the square-triangle random tiling model. J. Phys. A 30, p. 7077.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nienhuis, B. (1999). Exact Solution of Random Tiling Models. In: DeWitt-Morette, C., Zuber, JB. (eds) Quantum Field Theory: Perspective and Prospective. NATO Science Series, vol 530. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4542-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4542-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5673-8

  • Online ISBN: 978-94-011-4542-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics