Skip to main content

Direct Numerical Simulations of Compressible Turbulent Flows: Fundamentals and Applications

  • Chapter
Transition, Turbulence and Combustion Modelling

Part of the book series: ERCOFTAC Series ((ERCO,volume 6))

Abstract

The equations governing a time-dependent compressible flow are first discussed to bring out the key features associated with compressibility and the limiting behavior at low speed. Concepts of linear eigenmodes representing vortical, entropic and acoustic disturbances are introduced via analysis of disturbances in a compressible parallel shear flow. Linear and nonlinear coupling of such modes is stressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, N. A. and Shariff, K. 1996. A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. J. Comput. Phys. 127, 27–51.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Adams, N. A. 1998. Direct numerical simulation of turbulent compression corner flow. Theor. Comput. Fluid Dyn. 12, 109–129.

    Article  MATH  Google Scholar 

  3. Adamson, T. C. and Messiter, A. F. 1980. Analysis of two-dimensional interactions between shock waves and boundary layers. Ann. Rev. Fluid Mech. 12, 103–138.

    Article  MathSciNet  ADS  Google Scholar 

  4. Agui, J. H. 1998. Shock wave interactions with turbulence and vortices. Ph. D. Thesis, City Univ. of New York, New York.

    Google Scholar 

  5. Anyiwo, J.C. and Bushnell, D.M. 1982. Turbulence amplification in shock-wave boundary-layer interaction. AIAA J. 20, 893–899.

    Article  ADS  Google Scholar 

  6. Avital, E. 1998. A computational and analytical study of sound emitted by free shear flows. Ph. D. Thesis. Department of Engineering, Queen Mary and West field College, London.

    Google Scholar 

  7. Barre, S., Alem, D. and Bonnet, J. P. 1996. Experimental study of a normal shock/homogeneous turbulence interaction. AIAA J. 34, 968–974.

    Article  ADS  Google Scholar 

  8. Bastin, F. 1996. Jet noise using large eddy simulation. Annual Research Briefs, 1996, 115–132, Center for Turbulence Research, Stanford University.

    Google Scholar 

  9. Batchelor, G. K. 1967. An Introduction to Fluid Dynamics. Cambridge University Press.

    Google Scholar 

  10. Bayley, B. J., Levermore, C. D., Passot, T. 1992. Density variations in weakly compressible flows. Phys. Fluids A 4, 945–954.

    Article  MathSciNet  ADS  Google Scholar 

  11. Bayliss, A. and Turkel, E. 1982. Far field boundary conditions for compressible flow. J. Comput. Phys. 48, 182–199.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Blaisdell, G. A., Mansour, N. N., and Reynolds, W. C. 1993. Compressibility effects on the growth and structure of homogeneous turbulent shear flow. J. Fluid Mech. 256, 443–485.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Bogdanoff, D. 1983. Compressibility effects in turbulent shear layers. AIAA J. 21, 926–927.

    Article  ADS  Google Scholar 

  14. Bonnet, J. P., Debisschop, J. R. and Chambres, O. 1993. Experimental studies of the turbulent structure of supersonic mixing layers. AIAA Paper 93-0217.

    Google Scholar 

  15. Breidenthal, R. 1990. The sonic eddy — a model for compressible turbulence. AIAA Paper 90-0495.

    Google Scholar 

  16. Brentner, K. S. and Farassat, F. 1992. Helicopter noise prediction: the current status and future direction. J. Sound Vib. 170, 79–96.

    Article  ADS  Google Scholar 

  17. Brentner, K. S. 1996. Numerical algorithms for acoustic integrals — the devil is in the details. AIAA Paper 96-1706.

    Google Scholar 

  18. Brentner, K. S. and Farassat, F. 1998. Analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces. AIAA J. 36, 1379–1386.

    Article  ADS  Google Scholar 

  19. Bridges, J. and Hussain, F. 1992. Direct evaluation of aeroacoustic theory in a jet. J. Fluid Mech. 240, 469–501.

    Article  ADS  Google Scholar 

  20. Brown, G. and Roshko, A. 1974. On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775–816.

    Article  ADS  Google Scholar 

  21. Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A. 1988. Spectral Methods in Fluid Dynamics. Springer Verlag.

    Google Scholar 

  22. Carpenter, M. H., Gottlieb, D., Abarbanel, S. 1993. The stability of numerical boundary treatments for compact high-order finite-difference schemes. J. Comput. Phys. 108, 272–295.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Chu, B. T. and Kovasznay, L. 1958. Nonlinear interactions in a viscous heat conducting compressible gas. J. Fluid Mech. 3, 494–514.

    Article  MathSciNet  ADS  Google Scholar 

  24. Clemens, N. T. and Mungal, M. G. 1992. Two-and three-dimensional effects in the supersonic mixing layer. AIAA J. 30, 973–981.

    Article  ADS  Google Scholar 

  25. Clemens, N. T. and Mungal, M. G. 1995. Large-scale structure and entrainment in the supersonic mixing layer. J. Fluid Mech. 284, 171–216.

    Article  ADS  Google Scholar 

  26. Cockburn, B., and Shu, C. W. 1994. Nonlinearly stable compact schemes for shock calculations. SIAM J. Numer. Anal 31, 607–627.

    Article  MathSciNet  MATH  Google Scholar 

  27. Coleman, G. N., Kim, J. and Moser, R. D. 1995. A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 305, 159–183.

    Article  ADS  MATH  Google Scholar 

  28. Collis, S. S. and Lele, S. K. 1997. A computational investigation of receptivity in high-speed flow near a swept leading-edge. Report TF-71, Flow Physics and Computation Division, Department of Mech. Engrg., Stanford University.

    Google Scholar 

  29. Colonius, T., Lele, S. K. and Moin, P. 1993. Boundary conditions for direct computation of aerodynamic sound generation. AIAA J. 31, 1574–1582.

    Article  ADS  MATH  Google Scholar 

  30. Colonius, T., Lele, S. K. and Moin, P. 1997. Sound generation in a mixing layer. J. Fluid Mech. 330, 375–409.

    Article  ADS  MATH  Google Scholar 

  31. Colonius, T. 1996. Numerically nonreflecting boundary and interface conditions. AIAA Paper 96-1661.

    Google Scholar 

  32. Cortesi, A. B., Smith, B. L., Yadigaraglu, G. and Banerjee, S. 1999. Numerical investigation of the entrainment and mixing processes in a neutral and stably-stratified mixing layers. Phys. Fluids, 11, 162–185.

    Article  ADS  MATH  Google Scholar 

  33. Crighton, D. G. and Leppington, F. G. 1971. On the scattering of aerodynamic noise. J. Fluid Mech. 46, 577–597.

    Article  ADS  MATH  Google Scholar 

  34. Crighton, D. G. 1975. Basic principles of aerodynamic noise generation. Prog. Aerospace Sci. 16, 31–96.

    Article  ADS  Google Scholar 

  35. Crighton, D. G. and Bashforth, S. 1980. Nonlinear propagation of broadband jet noise. AIAA Paper 80-1039.

    Google Scholar 

  36. Crighton, D. G. and Huerre, P. 1990. Shear layer pressure fluctuations and su-perdirective acoustic sources. J. Fluid Mech. 220, 355–368.

    Article  ADS  MATH  Google Scholar 

  37. Crighton, D. G. 1993. Computational aeracoustics for low Mach number flows, in Computational Aeroacoustics, eds. Hardin, J. C. and Hussaini, M. Y., Springer Verlag, pp. 50–68.

    Google Scholar 

  38. Crow, S. C. 1970. Aerodynamic sound emission as a singular perturbation problem. Studies in Appl. Math. 49, 21–44.

    MATH  Google Scholar 

  39. Courant, R. and Friedrichs, K. 1976. Supersonic flow and shock waves. Springer-Verlag.

    Google Scholar 

  40. Deng, X. and Maekawa. H. Compact high-order accurate nonlinear schemes. J. Comput. Phys. 130, 77–91.

    Google Scholar 

  41. Dimotakis, P. E. 1986. Two-dimensional shear-layer entrainment. AIAA J. 24, 1791–1796.

    Article  ADS  Google Scholar 

  42. Dimotakis, P. A. 1991. Turbulent free shear layer mixing and combustion, in High-speed Flight Propulsion Systems, Prog, in Astronaut. Aeronaut., ed. S. N. B. Murthy, E. T. Curran, AIAA-Washington D. C, 265–340.

    Google Scholar 

  43. Djeridane, T., Amielh, M., Anselmet, F. and Fulachier, L. 1996. Velocity turbulence properties in the near-field region of axisymmetric variable density jets. Phys. Fluids 8, 1614–1630.

    Article  ADS  Google Scholar 

  44. Dowling, A. 1992. Flow noise of surfaces, in Modern Methods in Analytical Acoustics, chapter 16, 452–509.

    Google Scholar 

  45. Dutton, J. C. 1997. Compressible turbulent free-shear layers, in AGARD Report 819, Turbulence in Compressible Flows.

    Google Scholar 

  46. Engquist, B. and Majda, A. 1979. Radiation boundary conditions for acoustic and elastic wave calculations. Comm. Pure and Appl. Math. 32, 313–357.

    Article  MathSciNet  MATH  Google Scholar 

  47. Farassat, F. 1993. The acoustic analogy as a tool of computational aeroacoustics. in Computational Aeroacoustics, eds. Hardin, J. C. and Hussaini, M. Y., Springer Verlag, 133–155.

    Google Scholar 

  48. Ffowcs Williams and Hall, L. H. 1970. Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane. J. Fluid Mech. 40, 657–670.

    Article  ADS  MATH  Google Scholar 

  49. Ffowcs Williams, J. E. and Hawkings, D. L. 1969. Sound generation by turbulence and surfaces in arbitrary motion. Phil. Trans. Royal Soc. A 264, 321–342.

    Article  ADS  MATH  Google Scholar 

  50. Freund, J. B., Lele, S. K. and Moin, P. 1996. Calculation of the radiated sound field using an open Kirchhoff surface. AIAA J. 34, 909–916.

    Article  ADS  MATH  Google Scholar 

  51. Freund, J. B. 1997. Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound. AIAA J. 35, 740–742.

    Article  ADS  MATH  Google Scholar 

  52. Freund, J. B., Moin, P. and Lele, S. K. 1997. Compressibility effects in a turbulent annular mixing layer. Technical Report TF-72, Flow Physics and Computation Division, Mechanical Engineering, Stanford University.

    Google Scholar 

  53. Freund, J. B., Lele, S. K. and Moin, P. 1998. Direct simulation of a Mach 1.92 jet and its sound field. AIAA/CEAS Paper 98-2291.

    Google Scholar 

  54. Giles, M.B. 1990. Nonreflecting boundary conditions for Euler equation calculations. AIAA J. 28, 2050–2058.

    Article  ADS  Google Scholar 

  55. Givoli, D. 1991. Non-reflecting boundary conditions. J. Comput. Phys. 94, 1–29.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. Givoli, D. 1992. Numerical methods for problems in infinite domains. Elsevier, Amsterdam.

    MATH  Google Scholar 

  57. Goldstein, M. E. 1976. Aeroacoustics. McGraw Hill, New York.

    MATH  Google Scholar 

  58. Goldstein, M. E. 1978. Unsteady vortical and entropic distortions of potential flows round arbitrary obstacles. J. Fluid Mech. 89, 305–329.

    Article  MathSciNet  ADS  Google Scholar 

  59. Goldstein, M. E. 1979. Scattering and distortion of the unsteady motion on transversely sheared mean flows. J. Fluid Mech. 91, 601–632.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. Goldstein, M. E. 1984. Aeroacoustics of turbulent shear flows. Annual Rev. Fluid Mech. 16, 263–285.

    Article  ADS  Google Scholar 

  61. Gropengeisser, H. 1970. Study of the stability of boundary layers in compressible fluids. NASA TT-F-12.

    Google Scholar 

  62. Guarini, S. 1998. A direct numerical simulation of turbulence in a compressible turbulent boundary layer. Ph. D. Thesis, Department of Aeronautics and Astronautics, Stanford University.

    Google Scholar 

  63. Hannappel, R. and Friedrich, R. 1994. DNS of a M=2 shock interacting with isotropic turbulence. In Direct and Large-Eddy Simulation I, eds. Voke, P.R., Kleiser, L. and Chollet, J. P., Kluwer Academic Publishers.

    Google Scholar 

  64. Hardin, J. C. and Pope, D. S. 1994. An acoustic/viscous splitting technique for computational aeroacoustics. Theor. Comput. Fluid Dyn. 6, 323–340.

    Article  MATH  Google Scholar 

  65. Harten, A. and Osher, S. 1987. Uniformly high-order accurate nonoscillatory schemes, I. SIAM J. Num. Anal. 24, 279–309.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. Higdon, R. L. 1986. Absorbing boundary conditions for difference approximations to the multidimensional wave equation. Math. Computation 47, 629–651.

    MathSciNet  Google Scholar 

  67. Hu, F. Q., Hussaini, M. Y. and Manthey, J. L. 1996. Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics. J. Comput. Phys. 124, 177–191.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  68. Hu, F. Q. 1996. On absorbing boundary conditions for linearized Euler equations in a perfectly matched layer. J. Comput. Phys. 129, 201–219.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. Huang, P. G., Coleman, G. N. and Bradshaw, P. 1995. Compressible turbulent channel flows: DNS results and modeling. J. Fluid Mech. 305, 185–218.

    Article  ADS  MATH  Google Scholar 

  70. Monkewitz, P. A. and Huerre, P. 1982. Influence of the velocity ratio on the spatial stability of mixing layers. Phys. Fluids 25, 1137.

    Article  ADS  Google Scholar 

  71. Israeli, M. and Orszag, S. A. 1981 Approximation of radiation boundary condition. J. Comput. Phys., 41, 115–135.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  72. Jackson, T. L. and Grosch, C. E. 1989. Inviscid spatial stability of a compressible mixing layer. J. Fluid Mech. 209, 609–637.

    Article  MathSciNet  ADS  Google Scholar 

  73. Jacquin, L., Blin, E. and Geffroy, P. 1991. Experiments on free turbulence/shock wave interaction. Eighth Symposium on Turbulent Shear Flows, Munich, p. 1-2-1 to 1-2-6.

    Google Scholar 

  74. Kaltenbach, H. J., Fatica, M., Mittal, R, Lund, T. S. and Moin, P. 1999. Study of flow in a planar asymmetric diffuser using large-eddy simulation, to appear in J. Fluid Mech.

    Google Scholar 

  75. Kambe, T. 1986. Acoustic emissions by vortex motions. J. Fluid Mech. 173, 643–666.

    Article  ADS  MATH  Google Scholar 

  76. Karasso, P. S. and Mungal, M. G. 1996. Scalar mixing and reaction in plane liquid shear layers. J. Fluid Mech. 323, 23–63.

    Article  ADS  Google Scholar 

  77. Kevlahan, N. 1996. The propagation of weak shocks in non-uniform flows. J. Fluid Mech. 327, 161–197.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  78. Knight, D.D. 1997. Numerical simulations of compressible turbulent flows using the Reynolds-averaged Navier-Stokes equations, in AGARD Report 819, Turbulence in Compressible Flows.

    Google Scholar 

  79. Kosloff, R. and KoslofT, D. 1986. Absorbing boundaries for wave propagation problems. J. Comput. Phys. 63, 1986, 363–376.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  80. Kovásznay, L.S.G. 1953. Turbulence in supersonic flow. J. Aero. Sci. 20, 657–682.

    MATH  Google Scholar 

  81. Lagerstrom, P. A. 1964. Laminar Flow Theory. Princeton Univ. Press, reprinted from Theory of Laminar Flows, F. K. Moore, Editor, Vol. IV of High Speed Aerodynamics and Jet Propulsion.

    Google Scholar 

  82. Landau, L. D. 1944. Stability of tangential discontinuities in compressible fluid. Dokl. Akad. Nauk. SSSR 44, 139–141.

    MATH  Google Scholar 

  83. Le, H., Moin, P. and Kim, J. 1997. Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech. 330, 349–374.

    Article  ADS  MATH  Google Scholar 

  84. Lee, S., Lele, S. K. and Moin, P. 1992a. Simulation of spatially evolving compressible turbulence and the applicability of Taylor’s hypothesis. Phys. Fluids A 4, 1521–1530.

    Article  ADS  MATH  Google Scholar 

  85. Lee, S., Moin, P. and Lele, S.K. 1992b. Interaction of isotropic turbulence with a shock wave. Report TF-52, Department of Mechanical Engineering, Stanford University.

    Google Scholar 

  86. Lee, S., Lele, S.K. and Moin, P. 1993. Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J. Fluid Mech., 251, 533–562: corrigendum in J. Fluid Mech. 264, 373–374.

    Article  ADS  Google Scholar 

  87. Lee, S., Lele, S. K. and Moin, P. 1997. Interaction of isotropic turbulence with shock waves: effect of shock strength. J. Fluid Mech. 340, 225–247.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  88. Lees, L. and Lin, C. C. 1946. Investigation of the stability of the laminar boundary layer in a compressible fluid. NACA TN 1115.

    Google Scholar 

  89. Lessen, M., Fox., J. A. and Zien, H. M. 1965. On the inviscid stability of the laminar mixing of two parallel streams of a compressible fluid. J. Fluid Mech. 23, 355–367.

    Article  MathSciNet  ADS  Google Scholar 

  90. Lele, S. K. 1989. Direct numerical simulation of compressible free shear flows. AIAA Paper 89-0374.

    Google Scholar 

  91. Lele, S. K. 1992. Compact finite difference schemes with spectral-like resolution. J. Comp. Phys. 103, 16–42.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  92. Lele, S. K. 1994. Compressibility effects on turbulence. Ann. Rev. Fluid Mech. 26, 211–254.

    Article  MathSciNet  ADS  Google Scholar 

  93. Liepmann, H. and Roshko, A. 1957. Elements of Gas Dynamics. John Wiley.

    Google Scholar 

  94. Lighthill, M. J. 1952. On sound generated aerodynamically: I. General theory. Proc. Roy. Soc. London, Ser. A 221 564–587.

    MathSciNet  ADS  Google Scholar 

  95. Lilley, G. M. 1974. On the noise from jets. AGARD CP-131.

    Google Scholar 

  96. Lu, G. and Lele, S. K. 1994. On the density ratio effect on the growth rate of a compressible mixing layer. Phys. Fluids 6, 1073–1075.

    Article  ADS  Google Scholar 

  97. Lund, T., Wu, X. and Squires, K. D. 1998. Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140, 233–258.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  98. Mack, L. M. 1984. Boundary layer linear stability theory. AGARD Report 709.

    Google Scholar 

  99. Mahadevan, R. and Loth, E. 1994 High-speed cinematography of compressible mixing layers. Experiments in Fluids 17, 179–189.

    Article  ADS  Google Scholar 

  100. Mahesh, K., Lele, S. K. and Moin, P. 1994. The response of anisotropic turbulence to rapid homogeneous one-dimensional compression. Phys. Fluids. 6, 1052–1062.

    Article  ADS  MATH  Google Scholar 

  101. Mahesh, K., Lee, S., Lele, S. K. and Moin, P. 1995. The interaction of an isotropic field of acoustic waves with a shock wave. J. Fluid Mech. 300, 383–407.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  102. Mahesh, K., Lele, S. K. and Moin, P. 1996. The interaction of a shock wave with a turbulent shear flow. Report TF-69, Thermosciences Division, Mechanical Engineering Department, Stanford University.

    Google Scholar 

  103. Mahesh, K., Lele, S. K. and Moin, P. 1997. The influence of entropy fluctuations on the interaction of turbulence with a shock wave. J. Fluid Mech. 334, 353–379.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  104. Manning, T. A. and Lele, S. K. 1998. Numerical simulations of shock-vortex interactions in supersonic jet screech. AIAA Paper AIAA-98-0282.

    Google Scholar 

  105. Meadows, K.R., Caughey, D.A. and Casper, J. 1993. Computing unsteady shock waves for aeroacoustic applications. AIAA Paper No. 93-4329, Long Beach, CA.

    Google Scholar 

  106. Miller, M. F., Bowman, C. T. and Mungal, M. G. 1998. An experimental investigation of the effects of compresssibility on a turbulent reacting mixing layer. J. Fluid Mech. 356, 25–64.

    Article  ADS  Google Scholar 

  107. Mitchell, B. E., Lele, S. K. and Moin, P. 1995. Direct computation of the sound from a compressible co-rotating vortex pair. J. Fluid Mech. 285, 181–202.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  108. Mitchell, B. E., Lele, S. K. and Moin, P. 1997. Direct computation of Mach wave radiation in an axisymmetric jet. AIAA J. 35, 1574–1580.

    Article  ADS  MATH  Google Scholar 

  109. Mitchell, B. E., Lele, S. K. and Moin, P. 1999. Direct computation of the sound generated by vortex pairing in an axisymmetric jet. J. Fluid Mech. 383, 113–142.

    Article  ADS  MATH  Google Scholar 

  110. Mohring, W. 1978. On vortex sound at low Mach number. J. Fluid Mech. 85, 685–691.

    Article  MathSciNet  ADS  Google Scholar 

  111. Moin, P. and Mahesh, K. 1998. Direct numerical simulation: A tool in turbulence research. Ann. Rev. Fluid Mech. 30, 539–578.

    Article  MathSciNet  ADS  Google Scholar 

  112. Moore, F. K. 1953. Unsteady oblique interaction of a shock wave with a plane disturbance. NACA TN-2879.

    Google Scholar 

  113. Moyal, J. E. 1952. The spectra of turbulence in a compressible fluid: eddy turbulence and random noise. Proc. Cambridge Phil. Soc. 48, 329–344.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  114. Na, Y. and Moin, P. 1998. Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 374, 379–405.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  115. Papamoschou, D. 1991a. Structure of the compressible turbulent shear layer. AIAA J. 29 680-681.

    Google Scholar 

  116. Papamoschou, D. 1991b. Effect of Mach number on communication between regions of a shear layer. Proc. Eighth Symp. on Turbulent Shear Flows 21-5-1 to 21-5-6.

    Google Scholar 

  117. Papamoschou, D. and Roshko, A. 1988. The compressible turbulent mixing layer: an experimental study. J. Fluid Mech. 197, 453–477.

    Article  ADS  Google Scholar 

  118. Papamoschou, D. and Lele, S. K. 1993. Vortex-induced disturbance field in a compressible shear layer. Phys. Fluids A 5, 1412–1419.

    Article  ADS  Google Scholar 

  119. Papamoschou, D. and Bunyajitradulya, A. 1997. Evolution of large eddies in compressible shear layers. Phys. Fluids 9, 756–765.

    Article  ADS  Google Scholar 

  120. Poinsot, T. and Lele, S. K. 1992. Boundary conditions for direct simulation of compressible viscous flows. J. Comput. Phys., 101, 104–129.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  121. Powell, A. 1964. Theory of vortex sound. J. Acous. Soc. America 36, 177–195.

    Article  ADS  Google Scholar 

  122. Powell, A. 1960. Aerodynamic noise and a plane boundary. J. Acous. Soc. America 32, 982–990.

    Article  ADS  Google Scholar 

  123. Rai, M. M. and Moin, P. 1993. Direct numerical simulation of transition and turbulence in a spatially evolving boundary layer. J. Comput. Phys. 109, 169–192.

    Article  ADS  MATH  Google Scholar 

  124. Ragab, S.A. and Wu, J. L. 1989. Linear instability in two-dimensional compressible mixing layers. Phys. Fluids A 1, 957–966.

    Article  ADS  Google Scholar 

  125. Ribner, H.S. 1953. Convection of a pattern of vorticity through a shock wave. NACA TN-2861

    Google Scholar 

  126. Ribner, H.S. 1954. Shock-turbulence interaction and the generation of noise. NACA TN-3255.

    Google Scholar 

  127. Ribner, H. S. 1985. Cylindrical sound wave generation by shock-vortex interaction. AIAA J. 23, 1708–1715.

    Article  ADS  Google Scholar 

  128. Ribner, H. S. 1987. Spectra of noise and amplified turbulence emanating from shock-turbulence interaction. AIAA Journal, 25, 436–442.

    Article  ADS  Google Scholar 

  129. Ribner, H. S. 1998. Comment on ‘Experimental study of a normal shock/homogeneous turbulence interaction’. AIAA J. 36, 494–495.

    Article  ADS  Google Scholar 

  130. Ristorcelli, J. R. 1997. A pseudo-sound constitutive relationship for the dilatational covariances in compressible turbulence. J. Fluid Mech. 347, 37–70.

    Article  ADS  MATH  Google Scholar 

  131. Ristorcelli, J. R. and Blaisdell, G. A. 1997. Consistent initial conditions for the DNS of compressible turbulence. Phys. Fluids 9, 4–6.

    Article  ADS  Google Scholar 

  132. Sandham, N. D. and Reynolds, W. C. 1990. Compressible mixing layer: linear theory and direct simulation. AIAA J. 28, 618–624.

    Article  ADS  Google Scholar 

  133. Sarkar, S., Erlebacher, G., Hussaini, M. Y. and Kreiss, H. O. 1991. The analysis and modeling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473–493.

    Article  ADS  MATH  Google Scholar 

  134. Sarkar, S. 1995. The stabilizing effect of compressibility in turbulent shear flow. J. Fluid Mech. 282, 163–186.

    Article  ADS  MATH  Google Scholar 

  135. Schilichting, H. 1955. Boundary Layer Theory, McGraw Hill.

    Google Scholar 

  136. Shariff, K. and Wang, M. 1996. A numerical experiment on the role of surface shear stress in the generation of sound. Bull. American Physical Soc. 41, 1735.

    Google Scholar 

  137. Shapiro, A. 1953. The Dynamics and Thermodynamics of Compressible Flow Vol. 1. John Wiley.

    Google Scholar 

  138. Shu, C.-W. 1990. Numerical experimentation on the accuracy of ENO and modified ENO schemes. J. Sci. Comp. 5, 127–149.

    Article  MATH  Google Scholar 

  139. Shu, C.-W. and Osher, S. 1989. Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comp. Phys. 83, 32–78.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  140. Seiner, J. M. 1984. Advances in high speed jet aeroacoustics. AIAA Paper 84-2275.

    Google Scholar 

  141. Simone, A., Coleman, G. N. and Cambon, C. 1997. The effect of compressibility on turbulent shear flow: a rapid-distortion-theory and direct-numerical-simulation study. J. Fluid Mech. 330, 307–338.

    Article  ADS  MATH  Google Scholar 

  142. Spina, E. F., Smits, A. J. and Robinson, S. K. 1994. The physics of supersonic turbulent boundary layers. Ann. Rev. Fluid Mech. 26, 287–319.

    Article  ADS  Google Scholar 

  143. Spalart, P. 1988. Direct numerical simulation of a turbulent boundary layer up to R θ = 1410. J. Fluid Mech. 187, 61–98.

    Article  ADS  MATH  Google Scholar 

  144. Staquet, C. 1995. Two-dimensional secondary instabilities in a strongly stratified shear layer. J. Fluid Mech. 296, 73–126.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  145. Streett, C. L. and Macaraeg, M. G. 1989. Spectral multidomain for large-scale fluid dynamic simulations. Appl. Numer. Math. 6, 123–139.

    Article  ADS  MATH  Google Scholar 

  146. Stromberg, J. L., McLaughlin, D. K. and Trout, T. R. 1980. Flow field and acoustic properties of Mach number 0.9 jet at a low Reynolds number. J. Sound Vib. 72, 159–176.

    Article  ADS  Google Scholar 

  147. Taasan, S. and Nark, D. M. 1995. An absorbing buffer zone technique of acoustic wave propagation. AIAA Paper 95-0164.

    Google Scholar 

  148. Tarn, C. K. W, and Morris, P. J. 1980. The radiation of sound by the instability waves of a compressible plane turbuleny shear layer. J. Fluid Mech. 98, 349–381.

    Article  MathSciNet  ADS  Google Scholar 

  149. Tarn, C. K. W. and Burton, D. E. 1984. Sound generated by instability waves of supersonic flow. Part 2: axisymmetric jets. J. Fluid Mech. 138, 273–295.

    Article  MathSciNet  ADS  Google Scholar 

  150. Tarn, C. K. W. and Hu, F. Q. 1989a. On three families of instability waves of high speed jets. J. Fluid Mech. 201, 447–483.

    Article  MathSciNet  ADS  Google Scholar 

  151. Tarn, C. K. W. and Hu, F. Q. 1989b. The instability and acoustic wave modes of supersonic mixing layers inside a rectangular channel. J. Fluid Mech. 203, 51–76.

    Article  MathSciNet  ADS  Google Scholar 

  152. Tarn, C. K. W. and Webb, J. C. 1993. Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107, 262–281.

    Article  MathSciNet  ADS  Google Scholar 

  153. Tarn, C. K. W. and Webb, J. C. 1994. Radiation boundary condition and anisotropy correction for finite difference solutions of the Helmholtz equation. J. Comput. Phys. 113, 122–133.

    Article  MathSciNet  ADS  Google Scholar 

  154. Tarn, C. K. W. and Dong, Z. 1994. Wall boundary conditions for high-order finite difference schemes in computational aeroacoustics. Theor. and Comput. Fluid Dyn. 6, 303–322.

    Article  ADS  Google Scholar 

  155. Tarn, C. K. W. 1995. Computational aerocoustics: issues and methods. AIAA J. 33, 1788–1796.

    Article  ADS  Google Scholar 

  156. Thompson, P.A. 1985 Compressible-Fluid Dynamics. Maple Press.

    Google Scholar 

  157. Thompson, K. W. 1990. Time dependent boundary conditions for hyperbolic systems II. J. Comput. Phys. 89, 439–461.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  158. Tennekes, H. and Lumley, J. L. 1974. A First Course in Turbulence. MIT Press.

    Google Scholar 

  159. Trefethen, L. N. 1982. Group velocity in finite difference schemes. SIAM Review 24, 113–136.

    Article  MathSciNet  MATH  Google Scholar 

  160. Urban, W. D. and Mungal, M. G. 1998. A PIV study of compressible shear layers, in 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, July 13–16, 1998.

    Google Scholar 

  161. Vichnevetsky, R. and Bowles, J. B. 1982. Fourier analysis of numerical approximations of hyperbolic equations. SIAM.

    Google Scholar 

  162. von Mises, R. 1958. Mathematical theory of compressible fluid flow. Academic Press.

    Google Scholar 

  163. Vreman, A. W., Sandham, N. D. and Luo, K. H. 1996. Compressible mixing layer growth rate and turbulence characteristics. J. Fluid Mech. 320, 235–258.

    Article  ADS  MATH  Google Scholar 

  164. Wang, M., Lele, S. K. and Moin, P. 1996a. Sound radiation during local laminar breakdown in a low-Mach-number boundary layer. J. Fluid Mech. 319, 197–218.

    Article  ADS  MATH  Google Scholar 

  165. Wang, M., Lele, S. K. and Moin, P. 1996b. Computation of quadrupole noise using acoustic analogy. AIAA J. 34, 2247–2254.

    Article  ADS  MATH  Google Scholar 

  166. Wang, M. 1997. Progress in large-eddy simulation of trailing-edge turbulence and aeroacoustics. Annual Research Briefs, 1997, 37-49, Center for Turbulence Research, Stanford University.

    Google Scholar 

  167. Wray, A.A. 1986. Very low storage time-advancement schemes. Internal Report, NASA-Ames Research Center.

    Google Scholar 

  168. Yates, J. E. 1978. Application of the Bernoulli enthalpy concept to the study of vortex noise and jet impingement noise. NASA Contractor Rep. 2987.

    Google Scholar 

  169. Zank, G. P. and Matthaeus, W. H. 1991. The equations of nearly incompressible fluids. I. Hydrodynamics, turbulence, and waves. Phys. Fluids A 3, 69–82.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  170. Zeman, O. 1990. Dilatation dissipation: the concept and application in modeling compressible mixing layers. Phys. Fluids A 3, 951–955.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lele, S.K. (1999). Direct Numerical Simulations of Compressible Turbulent Flows: Fundamentals and Applications. In: Hanifi, A., Alfredsson, P.H., Johansson, A.V., Henningson, D.S. (eds) Transition, Turbulence and Combustion Modelling. ERCOFTAC Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4515-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4515-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5925-1

  • Online ISBN: 978-94-011-4515-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics