Skip to main content

Part of the book series: ERCOFTAC Series ((ERCO,volume 6))

Abstract

The main aim of the present chapter is to introduce engineering turbulence modelling emphasizing the underlying physics and methodology of development of this type of turbulence models. A complete state-of-the-art review is not attempted, but rather to give a basic understanding of turbulence closures and a tutorial into the foundations of basic enginering turbulence modelling. We will will focus on models for incompressible flows, but also introduce some basic concepts and equations for compressible turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aupoix, B., Cousteix, J. and Liandrat, J. 1989. MIS: A way to derive the dissipation equation. In Turbulent Shear Flow, vol. 6 (ed. J.-C. André), Springer.

    Google Scholar 

  2. Aronson, D. and Löfdahl, L. 1993. The plane wake of a cylinder: Measurements and inferences on turbulence modelling. To appear in Phys. Fluids.

    Google Scholar 

  3. Bardina, J., Ferziger, J.H. and Rogallo, R.S. 1985. Effect of rotation on isotropic turbulence; computation and modelling. J. Fluid Mech. 154, 321–336.

    Article  ADS  Google Scholar 

  4. Batchelor, G.K. 1953. The theory of homogeneous turbulence, Cambridge.

    Google Scholar 

  5. Batchelor, G.K. and Proudman, I. 1954. The effect of rapid distortion of a fluid in turbulent motion. Quart. J. Mech. Appl. Math. 7, 83–103.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bradshaw, P., Mansour, N.N. and Piomelli, U. 1987. On local approximations of the pressure-strain term in turbulence models. In Proc. of 1987 Summer Program, Report CTR-S87, Stanford University, USA.

    Google Scholar 

  7. Brasseur, J.G. and Corrsin, S. 1987. Spectral evolution of the Navier-Stokes equations for low order couplings of Fourier modes. In Advances in Turbulence 2, Berlin, Germany.

    Google Scholar 

  8. Cambon, C., Jacquin, L. and Lubrano, J.L. 1992. Toward a new Reynolds stress model for rotating turbulent flows. Phys. Fluids 4, 812–824.

    Article  ADS  MATH  Google Scholar 

  9. Champagne, F.H., Harris, V.G. and Corrsin, S. 1970. Experiments on nearly homogeneous turbulent shear flow. J. Fluid Mech. 41, 81–139.

    Article  ADS  Google Scholar 

  10. Chasnov, J.R. 1993. Computation of the Loitsianski integral in decaying isotropic turbulence. Phys. Fluids 5, 5279.

    Google Scholar 

  11. Chasnov, J.R. 1994. Similarity states of passive scalar transport in isotropic turbulence. Phys. Fluids 6, 1036.

    Article  ADS  MATH  Google Scholar 

  12. Chien, K.Y. 1982. Predictions of Channel and Boundary-Layer Flows with a Low-Reynolds-Number Turbulence Model. AIAA J. 20, 33–38.

    Article  ADS  MATH  Google Scholar 

  13. Choi, K.-S. 1983. A study of the return to isotropy of homogeneous turbulence. Ph. D. Thesis, Cornell University.

    Google Scholar 

  14. Chou, P.Y. 1945. On velocity correlations and the solutions of the equations of turbulent motion. Quart. of Applied Math. 3, 38–54.

    MATH  Google Scholar 

  15. Comte-Bellot, G. and Corrsin, S. 1966. The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25, 657–682.

    Article  ADS  Google Scholar 

  16. Craft, T.J., Launder, B.E. and Leschziner, M.A. 1993. On the prediction of turbulent flow in spirally fluted tubes. In Refined flow modelling and turbulence measurements, 5th Int. Symposium, eds Coantic et al, p327, Presses de l’école nationale des Ponts et chaussées.

    Google Scholar 

  17. Crow, S.C. 1968. Viscolelastic properties of fine-grained incompressible turbulence. J. Fluid Mech. 33, 1–20.

    Article  ADS  MATH  Google Scholar 

  18. Daly, B.J. and Harlow, F.H. 1970. Transport equations in turbulence. Int. Phys. Fluids 13, 2634–2649.

    Article  ADS  Google Scholar 

  19. Durbin, P.A. and Speziale, C.G. 1994. Realizability of second-moment closure via stochastic analysis. J. Fluid Mech. 280, 395407.

    Article  Google Scholar 

  20. Ekander, H. 1988. Prediction of curved and rotating channel flow with an improved algebraic Reynolds stress model. Trita-Mek-88-06, Dept. of Mech., Royal Institute of Technology, Stockholm, Sweden.

    Google Scholar 

  21. Friedrich, R. 1996. Compressibility effects due to turbulent fluctuations. Oral presentation at Sixth European Turbulence Conference, Lausanne, July 1996 and published as chapter IV of Critical Review of Prediction Methods for Compressible Turbulent Attached and Separated Flows, Ed. Ingemar Lindblad, FFA TN 1995-43.

    Google Scholar 

  22. Gatski, T.B and Speziale C.G. 1993. On explicit algebraic stress models for complex turbulent flows. J. Fluid Mech. 254, 59–78.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Gence, J.N. and Mathieu, J. 1979. On the application of successive plane strains to grid-generated turbulence. J. Fluid Mech. 93, 501–513.

    Article  ADS  Google Scholar 

  24. Gence, J.N. and Mathieu, J. 1980. The return to isotropy of a homogeneous turbulence having been submitted to two successive plane strains. J. Fluid Mech. 101, 555–566.

    Article  ADS  Google Scholar 

  25. George, W.K. and Hussein, H.J. 1991. Locally axisymmetric turbulence. J. Fluid Mech. 233, 1–23.

    Article  ADS  MATH  Google Scholar 

  26. Germano, M. 1986. A proposal for a redefinition of the turbulent stresses in the filtered Navier-Stokes equations. Phys. Fluids 29, 2323–2324.

    Article  ADS  MATH  Google Scholar 

  27. Gibson, M.M. and Launder, B.E. 1978. Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 86, 491–511.

    Article  ADS  MATH  Google Scholar 

  28. Girimaji, S.S. 1995. Fully-explicit and self-consistent algebraic Reynolds stress model ICASE Report No. 95-82.

    Google Scholar 

  29. Girimaji, S.S. 1996. Improved algebraic Reynolds stress model for engineering flows In Engineering Turbulence Modelling and Experiments 3 pp 121–129. Eds W. Rodi and G. Bergeles. Elsevier. Science B.V.

    Google Scholar 

  30. Grant, H.L., Stewart, R.W. and Molliet, A. 1962. Turbulence spectra from a tidal channel. J. Fluid Mech. 12, 241–268.

    Article  ADS  MATH  Google Scholar 

  31. Groth, J. 1991. Description of the pressure effects in the Reynolds stress transport equations. Phys. Fluids A 3, 2276–2277.

    Article  ADS  Google Scholar 

  32. Groth, J. 1991. On the modelling of homogeneous turbulence. PhD Thesis, Dept. of Mech., Royal Institute of Technology, Stockholm, Sweden.

    Google Scholar 

  33. Groth, J., Hallbäck M. and Johansson, A.V. 1989. Measurement and modeling of anisotropic turbulent flows. In Advances in Turbulence 2, eds H.-H. Fernholz and H.E. Fiedler, p84, Springer.

    Google Scholar 

  34. Groth, J., Hallbäck M. and Johansson, A.V. 1990. A non-linear model for the dissipation rate term in Reynolds stress models. In Engineering Turbulence Modelling and Experiments, eds W. Rodi and E.N. Ganić, p93, Elsevier.

    Google Scholar 

  35. Hallbäck, M. Groth, J. and Johansson, A.V. 1989. A Reynolds stress closure for the dissipation in anisotropic turbulent flows. In Proc. of the Seventh Symposium on Turbulent Shear Flows, Stanford University, USA.

    Google Scholar 

  36. Hallbäck, M. Groth, J. and Johansson, A.V. 1990. An algebraic model for non-isotropic turbulent dissipation rate in Reynolds stress closures. Phys. Fluids A 2, 1859–1866.

    Article  ADS  MATH  Google Scholar 

  37. Hallbäck, M. and Johansson, A.V. 1992. Modelling of pressure-strain in Homogeneous turbulence. In Advances in Turbulence 4, TU Delft, Holland.

    Google Scholar 

  38. Hallbäck, M 1993. Development and critical evaluation of turbulence models through direct numerical simulations of homogeneous turbulence. Trita-Mek-93-2, Dept. of Mech., Royal Institute of Technology, Stockholm, Sweden.

    Google Scholar 

  39. Hanjalić, K, and Launder, B.E. 1972. A Reynolds stress model of turbulence and its application to thin shear flows. J. Fluid Mech. 52, 609–638.

    Article  ADS  MATH  Google Scholar 

  40. Hanjalić, K, and Launder, B.E. 1976. Contribution towards a Reynolds-stress closure for low-Reynolds-number turbulence. J. Fluid Mech. 74, 593–610.

    Article  ADS  MATH  Google Scholar 

  41. Hinze, J.O. 1975. Turbulence Second Edition, McGraw-Hill.

    Google Scholar 

  42. Imao, S., Itoh, M. and Harada, T. 1996. Turbulent characteristics of the flow in an axially rotating pipe J. Heat and Fluid Flow 17, 444–451.

    Article  Google Scholar 

  43. Jacquin, L., Leuchter, O., Cambon, C. and Mathieu, J. 1990. Homogeneous turbulence in the presence of rotation. J. Fluid Mech. 220, 1–52.

    Article  ADS  MATH  Google Scholar 

  44. Johansson, A.V. and Hallbäck, M. 1994. Modelling of rapid pressure strain in Reynolds-stress closures. J. Fluid Mech. 269, 143–168.

    Article  ADS  MATH  Google Scholar 

  45. Johansson, A.V., Hallbäck, M. and Lindborg, E. 1994. Modelling of rapid pressure strain in Reynolds-stress closures — difficulties associated with rotational mean flows. Appl. Sci. Res. 53, 119–137.

    Article  ADS  MATH  Google Scholar 

  46. Johansson, A.V. and Wallin, S. 1996. A new explicit algebraic Reynolds stress model. Proc. Sixth European Turbulence Conference, Lausanne, July 1996, Ed. P. Monkewitz, 31–34.

    Google Scholar 

  47. Jones, W.P. and Launder, B.E. 1972. The prediction of laminarization with a two-equation model of turbulence.. Int. J of Heat and Mass Transfer 15, 310–314..

    Google Scholar 

  48. Jongen, T., Mompean, G. and Gatski, T.G. 1998. Accounting for Reynolds stress and dissipation rate anisotropies in inertial and noninertial frames. Phys. Fluids 10, 674–684.

    Article  ADS  Google Scholar 

  49. Kim, J. 1989. On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech. 205, 421–451.

    Article  ADS  Google Scholar 

  50. Kim, J., Moin, P. and Moser, R. 1987. Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166.

    Article  ADS  MATH  Google Scholar 

  51. Kolmogorov, A.N. 1942. Equations of turbulent motion of an incompressible fluid.. Izvestia Academy of Sciences, USSR; Physics, 6, 56–58..

    Google Scholar 

  52. Kovasznay, L.S.G. 1953. Turbulence in supersonic flow. J. Aeronaut. Sci. 20, 657–674.

    MATH  Google Scholar 

  53. Lam, C.K.G. and Bremhorst, K.A. 1981. Modified form of K-ɛ model for predicting wall turbulence. ASME, J. Fluids Engineering 103, 456–460.

    Article  ADS  Google Scholar 

  54. Launder, B.E. 1989. Second-moment closure: present... and future?. Int. J. Heat and Fluid Flow 10, 282–300.

    Article  Google Scholar 

  55. Launder, B.E., Reece, G.J. and Rodi, W. 1975. Progress in the development of a Reynolds-stress turbulence closure.. J. Fluid Mech. 41,,. 537–566.

    Article  ADS  Google Scholar 

  56. Launder, B.E. and Spalding, D.B. 1972. Mathematical models of turbulence, Academic Press..

    Google Scholar 

  57. Launder, B.E., Tselepidakis, D.P. and Younis, B.A. 1987. A second-moment closure study of rotating channel flow. J. Fluid Mech. 183, 63–75.

    Article  ADS  MATH  Google Scholar 

  58. Launder, B.E. and Reynolds, W.C. 1983. Asymptotic near-wall stress dissipation rates in a turbulent flow. Phys. Fluids A 26, 1157.

    Article  ADS  MATH  Google Scholar 

  59. Launder, B.E. and Li, S.-P. 1993. On the elimination of wall-topography parameters from second-moment closure. Phys. Fluids 6, 999–1006.

    Article  ADS  Google Scholar 

  60. Lee, M.J. 1989. Distortion of homogeneous turbulence by axisymmetric strain and dilatation. Phys. Fluids A 1, 1541–1557.

    Article  ADS  MATH  Google Scholar 

  61. Lee, M.J. 1990. A contribution toward rational modeling of the pressure-strain-rate correlation. Phys. Fluids A 2, 630–633.

    Article  ADS  Google Scholar 

  62. Lee, M.J., Kim, J. and Moin, P. 1989. Structure of turbulence at high shear rate. J. Fluid Mech. 216, 561–583.

    Article  ADS  Google Scholar 

  63. Lee, M.J. and Reynolds, W.C. 1985. Numerical Experiments on the Structure of Homogeneous Turbulence. Report No. TF-24, Dept. of Mech. Eng., Stanford Univ., USA.

    Google Scholar 

  64. Lele, S.K. 1994. Compressibility effects on turbulence. Ann. Rev. Fluid Mech. 26, 211–254.

    Article  MathSciNet  ADS  Google Scholar 

  65. Le Penven, L., Gence, J.N. and Comte-Bellot, G. 1985. On the approach to isotropy of homogeneous turbulence: effect of the partition of kinetic energy among the velocity components. In Frontiers in Fluid Mechanics, eds Davis and Lumley, Springer Verlag.

    Google Scholar 

  66. Lindberg, P.A. 1994. Near-wall turbulence models for 3D boundary layers. Appl. Sci. Res. 53, 139–162.

    Article  ADS  MATH  Google Scholar 

  67. Lindborg, E., Hallbäck, M. and Burden, A.D. 1992. EDQNM and DNS — comparative calculations. In Advances in Turbulence 4, TU Delft, Holland.

    Google Scholar 

  68. Lumley, J.L. 1978. Computational modeling of turbulent flows. Adv. Appl. Mech. 18, 123–177.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. Mansour, N.N., Kim, J. and Moin, P. 1988. Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. J. Fluid Mech. 194, 15–44.

    Article  ADS  Google Scholar 

  70. Mansour, N.N., Shih, T.-H. and Reynolds, W.C. 1991. The effects of rotation on initially anisotropic homogeneous flows. Phys. Fluids A 3, 2421–2425.

    Article  ADS  MATH  Google Scholar 

  71. Menter, F.R. 1993. Zonal Two Equation k — ω Turbulence Models for Aerodynamic Flows. AIAA 93-2906

    Google Scholar 

  72. Menter, F.R. 1992 Improved Two-Equation k — ω Turbulence Model for Aerodynamic Flows. NASA TM-03975

    Google Scholar 

  73. Morris, P.J. 1984. Modeling the pressure redistribution terms. Phys. of Fluids 27, 1620–1623.

    Article  ADS  MATH  Google Scholar 

  74. Naot, D., Shavit, A. and Wolfstein, M. 1973. Two-point correlation model and the redistribution of Reynolds stresses. Phys. Fluids 16, 738–743.

    Article  ADS  MATH  Google Scholar 

  75. Pao, Y.H. 1965. Structure of turbulent velocity and scalar fields at large wavenum-bers. Phys. of Fluids 8, 1063–1075.

    Article  ADS  Google Scholar 

  76. Patel, V.C., Rodi, W. and Scheurer G. 1985. Turbulence Models for near-wall and low Reynolds number flows: a review. AIAA J. 23, 1308–1319.

    Article  MathSciNet  ADS  Google Scholar 

  77. Pearson, J.R.A. 1959. The effect of uniform distortion on weak homogeneous turbulence. J. Fluid Mech. 5, 274–288.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  78. Pope, S.B. 1975. A more general effective-viscosity hypothesis J. Fluid Mech. 72, 331–340.

    Article  ADS  MATH  Google Scholar 

  79. Pope, S.B. 1985. Pdf methods for turbulent reacting flows. Prog. Energy Combust. Sci. 11, 119–192.

    Article  MathSciNet  ADS  Google Scholar 

  80. Prandtl, L. 1925. ber die ausgebildete Turbulenz.. ZAMM 5, 136–139.

    MATH  Google Scholar 

  81. Prandtl, L. 1945. ber ein neues Formelsystem fr die ausgebildete Turbulenz.. Nachr. Akad. Wiss. Gttingen. Math.-Phys. Kl. 1945, 6–19.

    MathSciNet  Google Scholar 

  82. Reynolds, W.C. 1976. Computation of turbulent flows. Ann. Rev. Fluid Mech. 8, 183–208.

    Article  ADS  Google Scholar 

  83. Reynolds, W.C. 1987. Fundamentals of turbulence for turbulence modelling and simulation. Lecture Notes for von Karman Institute, AGARD-CP-93, NATO.

    Google Scholar 

  84. Rodi, W. 1972. The prediction of free turbulent boundary layers by use of a two equation model of turbulence. Ph.D. thesis, University of London.

    Google Scholar 

  85. Rodi, W. 1976. A new algebraic relation for calculating the Reynolds stresses. Z. angew. Math. Mech. 56, T219–221.

    Article  MATH  Google Scholar 

  86. Rodi, W. 1980. Turbulence models and their application in hydrolics — a state of the art review, Int. Association for Hydraulic Research, Delft, The Netherlands.

    Google Scholar 

  87. Rodi, W and Mansour, N.N. 1993. Low Reynolds number K-ɛ modelling with the aid of direct simulation data. J. Fluid Mech. 250, 509–529.

    Article  ADS  MATH  Google Scholar 

  88. Rogallo, R.S. 1981. Numerical Experiments in Homogeneous Turbulence. NASA-TM81315, Ames Research Center, USA.

    Google Scholar 

  89. Rogers, M.M., Moin, P. and Reynolds, W.C. 1986. The structure and modeling of the hydrodynamic and passive scalar fields in homogeneous turbulence shear flow. Rep. no. TF-25, Stanford University, California 94305.

    Google Scholar 

  90. Rotta, J 1951. Statistische theorie nichthomogener turbulenz I. Zeitschrift für Physik 129, 547–572.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  91. Rubinstein, R. and Barton, J.M. 1992. Renormalization group analysis of the Reynolds stress transport equation. Phys. Fluids 4, 1759–1766.

    Article  ADS  MATH  Google Scholar 

  92. Saffman, P.G. 1967. The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27, 581–593.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  93. Saffman, P.G. 1970. A model for inhomogeneous turbulent flow.. Proc. Roy. Soc. London A 317, 417–433.

    Article  ADS  MATH  Google Scholar 

  94. Saffman, P.G. and Wilcox, D.C. 1974. Turbulence-model predictions for turbulent boundary layers.. AIAA Journal 12,,. 541–546.

    Article  ADS  MATH  Google Scholar 

  95. Sarkar, S. and Speziale, C.G. 1990. A simple nonlinear model for the return to isotropy in turbulence. Phys. Fluids A 2, 84–93.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  96. Schiilein, E., Krogmann, P. and Stanewsky, E. 1996. Documentation of Two-Dimensional Impinging Shock/Turbulent Boundary Layer Interaction Flow. DLR Report: DLR IB 223 — 96 A 49.

    Google Scholar 

  97. Schumann, U. 1977. Realizability of Reynolds-stress models. Phys. Fluids 20, 721–725.

    Article  ADS  MATH  Google Scholar 

  98. Schumann, U. and Pattersson, G.S. 1978. Numerical study of pressure and velocity fluctuations in nearly isotropic turbulence. J. Fluid Mech. 88, 685–709.

    Article  ADS  MATH  Google Scholar 

  99. Schumann, U. and Pattersson, G.S. 1978. Numerical study of the return of axisym-metric turbulence to isotropy. J. Fluid Mech. 88, 711–735.

    Article  ADS  MATH  Google Scholar 

  100. Shabbir, A. and Shih, T.H. 1992. Critical Assessment of Reynolds Stress Turbulence Models Using Homogeneous Flows NASA TM 105954, ICOMP-92-24, CMOTT-92-12.

    Google Scholar 

  101. Shih, T.H., Zhu, J. and Lumley, J.L. 1992. A Realizable Reynolds Stress Algebraic Equation Model NASA TM 105993, ICOMP-92-27, CMOTT-92-14.

    Google Scholar 

  102. Shih, T.-H. 1996. Constitutive relations and realizability of single-point turbulence closures Chapter 4 of Turbulence and Transition Modelling, Eds. M. Hallback, D.S. Henningson, A.V. Johansson and P.H. Alfredsson. Kluwer.

    Google Scholar 

  103. Shih, T.-H. and Lumley, J.L. 1993. Remarks on turbulent constitutive relations Math. Comput. Modelling, 18, 9–16.

    Article  MathSciNet  MATH  Google Scholar 

  104. Shih, T.-H. and Lumley, J.L. 1986. Second-order modeling of near-wall turbulence. Phys. of Fluids 29, 971–975.

    Article  ADS  MATH  Google Scholar 

  105. Shih, T.-H. and Mansour, N.N. 1990. Modeling of near-wall turbulence. In Engineering Turbulence Modelling and Experiment, eds W. Rodi and E.N. Ganić, Elsevier.

    Google Scholar 

  106. Shih, T.-H., Reynolds, W.C. and Mansour, N.N. 1990. A spectrum model for weakly anisotropic turbulence. Phys. Fluids A 2, 1500–1502.

    Article  ADS  Google Scholar 

  107. Sjögren, T. 1997. Development and Validation of Turbulence Models Through Experiment and Computation Doctoral thesis, Dept. of Mechanics, KTH, Stockholm, Sweden.

    Google Scholar 

  108. Sjögren, T. and Johansson, A.V. 1998. Measurement and modelling of homogeneous axisymmetric turbulence. J. Fluid Mech. 374, 59–90.

    Article  ADS  Google Scholar 

  109. Sjögren, T. and Johansson, A.V. 1998. Development and calibration of algebraic non-linear models for terms in the Reynolds stress transport equations. Submitted to Phys. Fluids,. SochJPF

    Google Scholar 

  110. So, R.M.C., Lai, Y.G. and Zhang, H.S. 1991. Second-Order Near-wall Turbulence Closures: A Review. AIAA J. 29, 1819–1835.

    Article  ADS  MATH  Google Scholar 

  111. So, R.M.C., Zhang, H.S. and Speziale, C.G. 1991. Near-wall modeling of the dissipation rate equation. AIAA J. 29, 2069–2076.

    Article  ADS  MATH  Google Scholar 

  112. So, R.M.C., Lai, Y.G., Zhang, H.S. and Hwang, B.C. 1991. Second-order near-wall turbulence closures: a review. AIAA J. 29, 1819–1835.

    Article  ADS  MATH  Google Scholar 

  113. Spalart, P. and Allmaras, S.R. 1992. A one-equation model for aerodynamic flows. AIAA 92-439.

    Google Scholar 

  114. Spencer, A.J.M. and Rivlin, R.S. 1959. The theory of matrix polynomials and its application to the mechanics of isotropic continua Arch. Rat. Mech. Anal. 2, 309–336.

    Article  MathSciNet  MATH  Google Scholar 

  115. Speziale, C.G. 1981. Some interesting properties of two-dimensional turbulence. Phys. Fluids 24, 1425–1427.

    Article  ADS  MATH  Google Scholar 

  116. Speziale, C.G. 1987. On non-linear K-l and K-ɛ models of turbulence. J. Fluid Mech. 178, 459–475.

    Article  ADS  MATH  Google Scholar 

  117. Speziale, C.G., Mansour, N.N. and Rogallo, R.S. 1987. The decay of isotropic turbulence in a rapidly rotating frame. Report CTR-S87, Ames Research Center/Stanford University, USA.

    Google Scholar 

  118. Speziale, C.G. 1988. Turbulence modeling in noninertial frames of reference. The-oret. Comput. Fluid Dynamics 1, 3–19.

    ADS  Google Scholar 

  119. Speziale, C.G., Sarkar, S. and Gatski, T.B. 1991. Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach. J. Fluid Mech. 227, 245–272.

    Article  ADS  MATH  Google Scholar 

  120. Speziale, C.G. and Xu, X.-H. 1996. Towards the development of second-order closure models for nonequilibrium turbulent flows Int. J. Heat and Fluid Flow 17, 238–244.

    Article  Google Scholar 

  121. Speziale, C.G. 1991. Analytical methods for the development of Reynolds-stress closures in turbulence. Annu. Rev. Fluid Mech. 23, 107–157.

    Article  MathSciNet  ADS  Google Scholar 

  122. Spina, E.F., Smits, A.J. and Robinson, S.K. 1994. The physics of supersonic turbulent boundary layers. Ann. Rev. Fluid Mech. 26, 287–319.

    Article  ADS  Google Scholar 

  123. Taulbee, D.B. 1992. An improved algebraic Reynolds stress model and corresponding nonlinear stress model. Phys. Fluids A 4, 2555–2561.

    Article  ADS  MATH  Google Scholar 

  124. Taulbee, D.B., Sonnenmeier, J.R. and Wall, K.M. 1994. Stress relation for three-dimensional turbulent flows Phys. Fluids 6, 1399–1401.

    Article  ADS  MATH  Google Scholar 

  125. Tavoularis, S. and Corrsin, S. 1981. Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. Part I. J. Fluid Mech. 104, 311–347.

    Article  ADS  Google Scholar 

  126. Tennekes, h. and Lumley, J.L. 1972. A first course in turbulence, MIT.

    Google Scholar 

  127. Townsend, A.A. 1954. The uniform distortion of homogeneous turbulence. Quart. J. Mech. Appl. Math. 7, 104–127.

    Article  MATH  Google Scholar 

  128. Townsend, A.A. 1976. The structure of turbulent shear flow, (2nd ed., Cambridge University Press.

    Google Scholar 

  129. Tucker, H.J. and Reynolds, A.J. 1968. The distortion of turbulence by irrotational plane strain. J. Fluid Mech. 32, 657–673.

    Article  ADS  Google Scholar 

  130. van Driest 1951. Turbulent boundary layers in compressible fluids. J. Aeronaut. Sci. 18, 145–160.

    MathSciNet  MATH  Google Scholar 

  131. Vandromme, D. 1992. Introduction to the Modeling of Turbulence von Karman Institute for Fluid Dynamics, Lecture Series 1991-02.

    Google Scholar 

  132. Wallin, S. and Johansson, A.V. 1996. A new explicit algebraic Reynolds stress turbulence model including an improved near-wall treatment. Proc. Flow Modeling and Turbulence Measurements VI, Tallahassee FL, Chen, Shih, Lienau and Kung (eds), 399–406.

    Google Scholar 

  133. Wallin, S. and Johansson, A.V. 1997. A complete explicit algebraic Reynolds stress turbulence model for incompressible and compressible turbulent flows. FFA TN 1997-51 (and submitted for publication).

    Google Scholar 

  134. Weinstock, J. 1981. Theory of pressure-strain-rate correlation for Reynolds-stress turbulence closures. Part 1. Off-diagonal element. J. Fluid Mech. 105, 369–396.

    Article  ADS  MATH  Google Scholar 

  135. Weinstock, J. 1982. Theory of the pressure-strain rate. Part 2. Diagonal elements. J. Fluid Mech. 116, 1–29.

    Article  ADS  MATH  Google Scholar 

  136. Wilcox, D.C. 1988. Reassessment of the scale determining equation for advanced turbulence models.. AIAA Journal 26, 1299–1310.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  137. Wilcox, D.C. 1994. Simulation of Transition with a Two-Equation Turbulence Model. AIAA J. 32, 247–255.

    Article  ADS  MATH  Google Scholar 

  138. Yoshizawa, A. 1995. Simplified statistical approach to complex turbulent flows and ensemble-mean compressible turbulence modelling.. Phys. Fluids 7, 3105–3117.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Johansson, A.V., Burden, A.D. (1999). An Introduction to Turbulence Modelling. In: Hanifi, A., Alfredsson, P.H., Johansson, A.V., Henningson, D.S. (eds) Transition, Turbulence and Combustion Modelling. ERCOFTAC Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4515-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4515-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5925-1

  • Online ISBN: 978-94-011-4515-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics