Skip to main content

Optimal LES: How Good Can an LES Be?

  • Conference paper
  • 462 Accesses

Part of the book series: Fluid Mechanics and its Applications ((FMIA,volume 54))

Abstract

In this paper, we approach Large Eddy Simulation (LES) by asking: How good is it possible for an LES to be? Taking a probabilistic approach, it is shown that by formally minimizing the rms error in the time derivative of the large scales, one can guarantee that the LES will reproduce the large scale statistics exactly. The LES model that minimizes the rms error in the time derivative is written as a conditional average, and we consider this to be the ideal LES model. Unfortunately, we do not know, nor can we practically compute this conditional average. The problem of LES modeling can therefore be considered to be a problem of finding a good approximation to the conditional average. Using direct numerical simulation data from a forced isotropic turbulence and a turbulent channel, estimates of the conditional average have been obtained, and the results are very instructive. Using the results, the nature of good LES models, the effects of filter definition, and the impact of inhomogeneity are explored. Also discussed is a program for developing practical LES models based on these ideas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian, R. J. (1977). On the role of conditional averages in turbulence theory. In J. Zakin and G. Patterson, Eds. Turbulence in Liquids. Princeton, NJ: Science Press.

    Google Scholar 

  • Adrian, R. J. (1990). Stochastic estimation of sub-grid scale motions. Appl. Mech. Rev., 43(214).

    Google Scholar 

  • Adrian, R. J., Jones, B. G., Chung, M. K., Hassan, Y., Nithianandan, C. K., and Tung, A. (1989). Approximation of turbulent conditional averages by stochastic estimation. Phys. Fluids, 1(6):992–998.

    Article  ADS  Google Scholar 

  • Adrian, R. J. and Moin, P. (1988). Stochastic estimation of organized turbulent structure: homogeneous shear flow. J. Fluid Mech., 190:531–559.

    Article  ADS  MATH  Google Scholar 

  • Chollet, J. and Lesieur, M. (1981). Parameterization of small scales of three-dimensional isotropic turbulence using spectral closures. J. Atmos. Sci., 38:2747–2757.

    Article  ADS  Google Scholar 

  • Domaradzki, J., Metcalfe, R., Rogallo, R., and Riley, J. (1987). Analysis of subgrid-scale eddy viscosity with use of results from direct numerical simulations. Phys. Rev. Lett., 68(6):547–550.

    Article  ADS  Google Scholar 

  • Germano, M., Piomelli, U., Moin, P., and Cabot, W. H. (1991). A dynamic subgrid-scale eddy viscosity model. Phys. Fluids, 3:1760–1765.

    Article  ADS  MATH  Google Scholar 

  • Kraichnan, R. (1976). Eddy viscosity in two and three dimensions. J. Atmos. Sci., 33:1521–1536.

    Article  ADS  Google Scholar 

  • Langford, J. and Moser, R. (1999). Optimal large-eddy simulation formulations for isotropic turbulence. submitted to The Journal of Fluid Mechanics.

    Google Scholar 

  • Lesieur, M. (1998). Spectral eddy-vsicosity based LES of incompressible and compressible shear flows. AIAA-98-2894.

    Google Scholar 

  • Lesieur, M. and Métais, O. (1996). New trends in large-eddy simulations of turbulence. Annu. Rev. of Fluid Mech., 28:45–82.

    Article  ADS  Google Scholar 

  • Lesieur, M. and Rogallo, R. (1989). Large-eddy simulation of passive scalar diffusion in isotropic turbulence. Phys. Fluids, 1(4):718–722.

    Article  ADS  Google Scholar 

  • Lilly, D. K. (1992). A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids, 4(3):633–635.

    Article  MathSciNet  ADS  Google Scholar 

  • Liu, S., Meneveau, C., and Katz, J. (1994). On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. J. Fluid Mech., 275:83–119.

    Article  ADS  Google Scholar 

  • Métais, O. and Lesieur, M. (1992). Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech., 239:157.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Misra, A. and Pullin, D. I. (1997). A vortex-based subgrid model for large-eddy simulation. Phys. Fluids, 9:2443–2454.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Moser, R. D. and Adrian, R. J. (1998). Turbulence data for les development and validation. In Proceedings of FEDSM’98, FEDSM98-5092.

    Google Scholar 

  • Moser, R. D., Kim, J., and Mansour, N. N. (1999). Direct numerical simulation of turbulent channel flow up to re r = 590. pof, 11:943–945.

    MATH  Google Scholar 

  • Papoulis, A. (1965). Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New York.

    MATH  Google Scholar 

  • Pope, S. B. (1997). private communication.

    Google Scholar 

  • Rogallo, R. S. and Moin, P. (1984). Numerical simulation of turbulent flows. Annu. Rev. of Fluid Mech., 16:99–137.

    Article  ADS  Google Scholar 

  • Zhou, Y. and Vahala, G. (1993). Reformulation of recursive-renormalization-group-based subgrid modeling of turbulence. Phys. Rev. E, 47:2503–2519.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Moser, R.D., Langford, J.A., Völker, S. (1999). Optimal LES: How Good Can an LES Be?. In: Knight, D., Sakell, L. (eds) Recent Advances in DNS and LES. Fluid Mechanics and its Applications, vol 54. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4513-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4513-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5924-4

  • Online ISBN: 978-94-011-4513-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics