Optimal LES: How Good Can an LES Be?

  • R. D. Moser
  • J. A. Langford
  • S. Völker
Conference paper
Part of the Fluid Mechanics and its Applications book series (FMIA, volume 54)


In this paper, we approach Large Eddy Simulation (LES) by asking: How good is it possible for an LES to be? Taking a probabilistic approach, it is shown that by formally minimizing the rms error in the time derivative of the large scales, one can guarantee that the LES will reproduce the large scale statistics exactly. The LES model that minimizes the rms error in the time derivative is written as a conditional average, and we consider this to be the ideal LES model. Unfortunately, we do not know, nor can we practically compute this conditional average. The problem of LES modeling can therefore be considered to be a problem of finding a good approximation to the conditional average. Using direct numerical simulation data from a forced isotropic turbulence and a turbulent channel, estimates of the conditional average have been obtained, and the results are very instructive. Using the results, the nature of good LES models, the effects of filter definition, and the impact of inhomogeneity are explored. Also discussed is a program for developing practical LES models based on these ideas.


Large Eddy Simulation Direct Numerical Simulation Eddy Viscosity Stochastic Estimation Isotropic Turbulence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, R. J. (1977). On the role of conditional averages in turbulence theory. In J. Zakin and G. Patterson, Eds. Turbulence in Liquids. Princeton, NJ: Science Press.Google Scholar
  2. Adrian, R. J. (1990). Stochastic estimation of sub-grid scale motions. Appl. Mech. Rev., 43(214).Google Scholar
  3. Adrian, R. J., Jones, B. G., Chung, M. K., Hassan, Y., Nithianandan, C. K., and Tung, A. (1989). Approximation of turbulent conditional averages by stochastic estimation. Phys. Fluids, 1(6):992–998.ADSCrossRefGoogle Scholar
  4. Adrian, R. J. and Moin, P. (1988). Stochastic estimation of organized turbulent structure: homogeneous shear flow. J. Fluid Mech., 190:531–559.ADSzbMATHCrossRefGoogle Scholar
  5. Chollet, J. and Lesieur, M. (1981). Parameterization of small scales of three-dimensional isotropic turbulence using spectral closures. J. Atmos. Sci., 38:2747–2757.ADSCrossRefGoogle Scholar
  6. Domaradzki, J., Metcalfe, R., Rogallo, R., and Riley, J. (1987). Analysis of subgrid-scale eddy viscosity with use of results from direct numerical simulations. Phys. Rev. Lett., 68(6):547–550.ADSCrossRefGoogle Scholar
  7. Germano, M., Piomelli, U., Moin, P., and Cabot, W. H. (1991). A dynamic subgrid-scale eddy viscosity model. Phys. Fluids, 3:1760–1765.ADSzbMATHCrossRefGoogle Scholar
  8. Kraichnan, R. (1976). Eddy viscosity in two and three dimensions. J. Atmos. Sci., 33:1521–1536.ADSCrossRefGoogle Scholar
  9. Langford, J. and Moser, R. (1999). Optimal large-eddy simulation formulations for isotropic turbulence. submitted to The Journal of Fluid Mechanics.Google Scholar
  10. Lesieur, M. (1998). Spectral eddy-vsicosity based LES of incompressible and compressible shear flows. AIAA-98-2894.Google Scholar
  11. Lesieur, M. and Métais, O. (1996). New trends in large-eddy simulations of turbulence. Annu. Rev. of Fluid Mech., 28:45–82.ADSCrossRefGoogle Scholar
  12. Lesieur, M. and Rogallo, R. (1989). Large-eddy simulation of passive scalar diffusion in isotropic turbulence. Phys. Fluids, 1(4):718–722.ADSCrossRefGoogle Scholar
  13. Lilly, D. K. (1992). A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids, 4(3):633–635.MathSciNetADSCrossRefGoogle Scholar
  14. Liu, S., Meneveau, C., and Katz, J. (1994). On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. J. Fluid Mech., 275:83–119.ADSCrossRefGoogle Scholar
  15. Métais, O. and Lesieur, M. (1992). Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech., 239:157.MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. Misra, A. and Pullin, D. I. (1997). A vortex-based subgrid model for large-eddy simulation. Phys. Fluids, 9:2443–2454.MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. Moser, R. D. and Adrian, R. J. (1998). Turbulence data for les development and validation. In Proceedings of FEDSM’98, FEDSM98-5092.Google Scholar
  18. Moser, R. D., Kim, J., and Mansour, N. N. (1999). Direct numerical simulation of turbulent channel flow up to re r = 590. pof, 11:943–945.zbMATHGoogle Scholar
  19. Papoulis, A. (1965). Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New York.zbMATHGoogle Scholar
  20. Pope, S. B. (1997). private communication.Google Scholar
  21. Rogallo, R. S. and Moin, P. (1984). Numerical simulation of turbulent flows. Annu. Rev. of Fluid Mech., 16:99–137.ADSCrossRefGoogle Scholar
  22. Zhou, Y. and Vahala, G. (1993). Reformulation of recursive-renormalization-group-based subgrid modeling of turbulence. Phys. Rev. E, 47:2503–2519.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • R. D. Moser
    • 1
  • J. A. Langford
    • 1
  • S. Völker
    • 1
  1. 1.Dept. of Theoretical and Applied MechanicsUniveristy of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations