Skip to main content

Large Eddy Simulation of the Turbulent Flow around a Circular Cylinder with Non-eddy Viscosity SGS model

  • Conference paper
Recent Advances in DNS and LES

Part of the book series: Fluid Mechanics and its Applications ((FMIA,volume 54))

Abstract

The rapid development of the modern computer in speed and memory provides a powerful tool to investigate the turbulence. Recent direct numerical simulation (DNS) of the Navier-Stokes equation has demonstrated its capability to describe the details of the turbulent flow. However, the ratio of the largest scale to the smallest scale of vortexes in turbulent flow increases with the Reynolds number of the flow rapidly, hence the scale of the computational domain must be larger than the largest scale and the mesh scale should be less than or at least equal to the scale of the smallest vortex,. Then the mesh number is very large and the required memory of computer will be so enormous to exceed the limit of the recent supercomputer even if the Reynolds number is moderate. As a compromise method, the large eddy simulation(LES) emerges as the times, in which the vortexes with mesh-like scale can be described and the influence of the movement with the smaller scale to the simulated movement with large scale is achieved through the subgrid scale modeling. When the mesh scale is small sufficiently, the major performance and details of the turbulence can be displayed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardina, J., Ph. D. dissertation, Dept. Mech. Engr., Standford University, Stanford, California, USA.

    Google Scholar 

  2. Beaudan P. and Moin P. Report No. TF-62, Thermosciences Division, Department of mechanical engineering, Stanford University, 1994

    Google Scholar 

  3. Berger, E. and Wille, R., Periodic flow phenomena. Ann. Rev. Fluid Mech. 1972. 4, 313–340

    Article  ADS  Google Scholar 

  4. Braza M., Chassaing P. and Ha Mind, H.. J. Fluid Mech. 1986, Vol. 165, 79–130

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Deardorff, J.W. J. Fluid Mech. Vol.41 pp453–480 (1970)

    Article  ADS  MATH  Google Scholar 

  6. Germano, M., Piomelli, U., Moin, P., & Cabot, W Phys. Fluids A 3, p1760–1765 (1991)

    Article  ADS  MATH  Google Scholar 

  7. Jordan, S.A. and Ragab, S.A. J. Fluids Engn. Vol.120, pp243–252

    Google Scholar 

  8. Leonard, A., Adv. In Geophys., 18A, 237, 1974.

    ADS  Google Scholar 

  9. Leonard, B.P. Comput. Meths. Appl. Mech. Eng., 1979, Vol.19 59–98

    Article  ADS  MATH  Google Scholar 

  10. Leslie, D. C., Theories of turbulence, Oxford U. Press, 1973.

    Google Scholar 

  11. Lesieur, M., Trubulence in fluids, Second ed., Kluwer, Dordrecht, 1991.

    Google Scholar 

  12. Lu X.Y., Dalton C. and Zhang J.F. 1996 SME/OMAE, Florence, June

    Google Scholar 

  13. Mittal, R. and Balachandar, S., Phys. Fluids, 7(8), August 1995

    Google Scholar 

  14. Morkovm, M.V., ASME Symp. on fully separated flows, Philadelphia, Pa., 1964, 102–119

    Google Scholar 

  15. Norberg, C., 1987, Pub. No.87/2, Dept. of Appl. Thermodynamics and Fluid Mech. Chalmer Uni. of Tech., Gothenburg, Sweden.

    Google Scholar 

  16. Rhie, C.M. & Chow, W.L. 1983. AIAA J., Vol.21, pp1525–1532

    Google Scholar 

  17. Patankar, S. V., J. Heat transfer, vol. 101, 29

    Google Scholar 

  18. Shah, K. B. and Ferziger, J. H., Center for Turbulence Research Annual Research Brefs 1995.

    Google Scholar 

  19. Smagorinsky, J., Mon. Wea. Rev., 91, 99, 1963.

    Article  ADS  Google Scholar 

  20. Su, M.D. Tang, G.F. Fu, S. J. of Wind Eng. And Aero Dyn. Vol. 79/3 pp289–306 (1999)

    Article  Google Scholar 

  21. Sun X. and Dalton C. 1994 ASME/WAM.

    Google Scholar 

  22. Yokuda, S. and Ramaprian B.R., Phys. Fluids 1990 A, 2, 784–791

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Su, M., Kang, Q. (1999). Large Eddy Simulation of the Turbulent Flow around a Circular Cylinder with Non-eddy Viscosity SGS model. In: Knight, D., Sakell, L. (eds) Recent Advances in DNS and LES. Fluid Mechanics and its Applications, vol 54. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4513-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4513-8_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5924-4

  • Online ISBN: 978-94-011-4513-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics