Large-Eddy Simulations of Compressible Shear Flows

  • P. Comte
Conference paper
Part of the Fluid Mechanics and its Applications book series (FMIA, volume 54)


LES of compressible boundary layers performed with a variable-density extension of the filtered and selective structure-function models presented in Lesieur & Métais, 1996, Ann. Rev. Fluid Mech., 28, 45–82). Quasi-incompressible transitional boundary layers show the establishement of a streak system of spanwise spacing ~ 100w.u. well upstream of the peak of skin friction, which bolsters up the expanations in terms of algebraic instabilities (e.g. Landahl, 1980, J. Fluid Mech., 98, 243–251). A supersonic compression-ramp flow is found to develop Dean-Görtler vortices with intense and quasi-steady spanwise fluctuations of wall heat-flux.


Compressible Shear Compressible Boundary Layer Compression Ramp Parabolized Stability Equation Spanwise Spacing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Airiau, C. (1994) “Stabilité linéaire et faiblement non linéaire d’une couche limite laminaire incompressible par un systeme d’équations parabolisé (PSE)”, PhD Thesis, Toulouse University.Google Scholar
  2. Barenblatt, G. (1993), J. Fluid Mech., 248, 513–529.MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. Coleman, G.N., Kim, J., Moser, R.D. (1995), J. Fluid Mech., 305, pp. 159–183.ADSzbMATHCrossRefGoogle Scholar
  4. Comte, P., Ducros, F., Silvestrini, J.H., David, E., Lamballais, E., Métais, O. & Lesieur, M. (1994), 74th AGARD Fluid Dynamics Panel Meeting, Crete.Google Scholar
  5. Comte, P. & Lesieur, M. (1998) Large-eddy simulations of compressible turbulent flows. Advances in turbulence modelling, VKI Lecture Series 1998–05.Google Scholar
  6. Domaradzki, J.A., Metcalfe, R.W., Rogallo, R.S. & Riley, J.J. (1987) Analysis of subgrid-scale eddy viscosity with the use of the results from direct numerical simulations. Phys. Rev. Lett., 58, 547–50.ADSCrossRefGoogle Scholar
  7. Ducros, F., Comte, P. AND Lesieur, M. (1996) “Large-eddy simulation of transition to turbulence in a boundary-layer developing spatially over a flat plate”, J. Fluid Mech., 326, 1–36.ADSzbMATHCrossRefGoogle Scholar
  8. Erlebacher G., Hussaini M.Y., Speziale C.G., Zang T.A. (1987) ICASE Report, 87-20; and also (1992) “Toward the large-eddy simulation of compressible flows”, J. Fluid Mech., 238, 155.ADSCrossRefGoogle Scholar
  9. Favre, A. (1965) J. de Mécanique, 4, 361.Google Scholar
  10. Ghosal S. & Moin, P. (1995) J. Comp. Phys., 118, 24.MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. Gottlieb D. & Turkel E. (1976) Math. Comp., 30, 703.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Herbert, T. (1988) Secondary instability of boundary layers. Ann. Rev. Fluid Mech., 20, 487–526.ADSCrossRefGoogle Scholar
  13. Herbert, T. & Bertolotti, F.P. 1991 Analysis of the linear stability of compressible boundary layer using PSE, Theoret. and Comp. Fluids Dynamics, 3, 117–124.ADSzbMATHCrossRefGoogle Scholar
  14. Klebanoff, P.S., Tidstrom, K.D. & Sargent, L.M. (1962) J. Fluid Mech., 12, 1–34.ADSzbMATHCrossRefGoogle Scholar
  15. Kraichnan, R.H. (1976) “Eddy viscosity in two and three dimensions”, J. Atmos. Sci., 33, 1521–1536.ADSCrossRefGoogle Scholar
  16. Lamballais, E., Métais, O. & Lesieur, M. (1998) “Spectral-dynamic model for large-eddy simulations of turbulent rotating channel flow”, Theor. Comp. Fluid Dyn., 12, 149–177.zbMATHCrossRefGoogle Scholar
  17. Landahl, M.T. (1980) “A note on an algebraic instability of inviscid parallel shear flows”, J. Fluid Mech., 98, pp. 243–251.MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. Lesieur, M. (1997) “Spectral dynamic models for LES of turbulence”, in Advances in DNS/LES — Proceedings of the First AFOSR International Conference on DNS/LES, C. Liu, Z. Liu and L. Sakell, eds.Google Scholar
  19. Lesieur, M. & Métais, O. (1996) ‘New trends in large-eddy simulations of turbulence’, Ann. Rev. Fluid Mech., 28, 45–82.ADSCrossRefGoogle Scholar
  20. Leslie, D.C. & Quarini, G.L. (1979) “The application of turbulence theory to the formulation of subgrid modelling procedures”. J. Fluid Mech., 91, 65–91.ADSzbMATHCrossRefGoogle Scholar
  21. Métais, O. & Lesieur, M. (1992) “Spectral large-eddy simulations of isotropic and stably-stratified turbulence”, J. Fluid Mech., 239, 157–194.MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. Moin, P., Squires, K., Cabot, W. & Lee, S. (1991) “A dynamic subgrid-scale model for compressible turbulence and scalar transport”, Phys. Fluids A, 3,(11), pp. 2746–2757.ADSzbMATHCrossRefGoogle Scholar
  23. Normand, X. & Lesieur, M. (1992) “Direct and large-eddy simulation of transition in the compressible boundary layer”, Theor. Comp. Fluid Dyn., 3, pp. 231–352.zbMATHCrossRefGoogle Scholar
  24. Silvestrini, J. H., Lamballais, E. & Lesieur, M. (1998) “Spectral-dynamic model for LES of free and wall shear flows”, International Journal of Heat and Fluid Flow, 19, 492–504.CrossRefGoogle Scholar
  25. Viviand, H. (1974) Rech. Aeros., 1, 65.MathSciNetGoogle Scholar
  26. Yoshizawa, Y. (1986) Phys. Fluids, 29, 2152.ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • P. Comte
    • 1
    • 2
  1. 1.LEGI/IMGGrenoble cedex 9France
  2. 2.IMFStrasbourgFrance

Personalised recommendations