Skip to main content

Modelling Hydrogen-Bonded Structures at Thermodynamical Transformations

  • Chapter
Crystal Engineering: From Molecules and Crystals to Materials

Part of the book series: NATO Science Series ((ASIC,volume 538))

  • 541 Accesses

Abstract

Any substance is an assembly of interacting atoms, molecules or ions. Types of the interactions are usually associated with the chemical composition of a substance. Thus atoms of noble gases or many organic compounds interact with van der Waals forces in molecular crystals, structures of salts are dominated by electrostatic interactions, and silicon or diamond crystals are in fact huge covalently bonded molecules. Both the interactions and properties can change at varying thermodynamic conditions. Such changes of properties can be subtle and monotonous, but also abrupt and drastic 1,2 for example an insulator can become a semi- or a superconductor, a paraelectric can turn into a ferroelectric, a paramagnet into a ferromagnet, a dielectric into a metal, a fluid into superfluid, a gas into plasma, a crystal can suddenly become longer by nearly 50% 3. Most of materials sciences and technologies nowadays are soundly based on the knowledge of the interactions between atoms, ions or molecules. It is also important to understand the role of the interactions for transformations of the substances and their properties. This knowledge is essential for verifying theories on solid-state chemistry and physics, for predicting properties of a substance at varied thermodynamic conditions, to model structural changes at the transition point, and also to identify and to synthesise a substance of requested properties. In the following chapter the role of hydrogen bonds for properties of substances, transformations of their structures, as well as the detailed analysis of the hydrogen bond geometry at phase transitions are discussed. It will be shown that hydrogen bonds are convenient objects for investigating structural transformations, for describing these transformations analytically, and for understanding their origins and mechanisms. Owing to relatively simple structure of hydrogen bonds, their geometrical transformations can be explicitly analysed as a set of trigonometric equations, provided that the electronic structures of the donor and acceptor atoms do not change. The results can be applied to many other substances, irrespective to the nature of interactions in their structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cowley, R. A. (1980) Structural phase transitions I. Landau theory, Advances in Physics 29, 1–110.

    Article  CAS  Google Scholar 

  2. Klamut, J., Durczewski, K. and Sznajd, J. (1979) Wstep do frzyki przejsé fazowych [Eng. Introduction to the Physics of Phase Transitions] Zaldad Narodowy im. Ossolitískich, Wroclaw.

    Google Scholar 

  3. Katrusiak, A. and Szafrattski, M. (1996) Structural phase transitions in guanidinium nitrate, J. Mol. Struct 378, 205–223.

    Article  CAS  Google Scholar 

  4. Jeffrey, G. A. And Saenger, W. (1991) Hydrogen Bonding in Biological Structures, Springer-Verlag Berlin Heidelberg New York.

    Book  Google Scholar 

  5. Pauling, L. (1960) Nature of the Chemical Bond, Cornell Univ. Press.

    Google Scholar 

  6. Kitaigorodskii, A. I. (1973) Molecular Crystals and Molecules, Academic Press, New York-London, Academic Press [Polish edition: Krysztaly molekularne,PWN Warszawa (1976)].

    Google Scholar 

  7. Laing, M. (1975) The Packing of Molecules in Crystals, South African Journal of Science 71, 171–175.

    CAS  Google Scholar 

  8. Nyburg, S. C. and Faerman, C. H. (1985) A Revision of van der Waals Atomic Radii for Molecular Crystals: N, O, F, S, Cl, Se, Br and I Bonded to Carbon, Acta Cryst. B41, 274–279.

    CAS  Google Scholar 

  9. Novak, A. (1974) Hydrogen Bonding in Solids. Correlation of Spectroscopic and Crystallographic Data, Structure and Bonding 18, 177–215.

    Article  CAS  Google Scholar 

  10. Taylor, R., Kennard, O. and Versichel, W. (1984) Geometry of the N-H•••O=C Hydrogen Bond. 2. Three-Center (“Bifurcated”) and Four Center (“Trifurcated”) Bonds, J. Am. Chem. Soc. 106, 244–248.

    Article  CAS  Google Scholar 

  11. Emsley, J. (1980) Very Strong Hydrogen Bonding, Chem. Soc. Rev.,91, 91–124.

    Article  Google Scholar 

  12. Joesten, M. D. (1982) Hydrogen Bonding and Proton Transfer, J. Chem. Educ. 59, 362–366.

    Article  CAS  Google Scholar 

  13. Yongping Pan and McAllister, M. A. (1997) Characterisation of Low-Barrier Hydrogen Bonds. 5. Microsolvation of Enol-Enolate. An ab Initio and DFT Investigation. J Org. Chem. 62, 8171–8176.

    Article  CAS  Google Scholar 

  14. Kroon, J., Kanters, J. A., van Duijneveldt-van de Rijdt, J. G. C. M., van Duijneveldt, F. D. and Vliegenhart, J. A. (1975) O-H…O hydrogen bonds in molecular crystals. A statistical and quantum-chemical analysis, J. Mol. Struct. 24, 109–129.

    CAS  Google Scholar 

  15. Saykally, R. J. and Blake, G. A. (1993) Molecular Interactions and Hydrogen Bond Tunneling Dynamics: Some New Perspectives, Science 259, 1570–1575.

    Article  CAS  Google Scholar 

  16. Franks, F. (1972) The Properties of Ice. in F. Franks (ed.) If “tiler. A Comprehensive Treatise, Vol. 1. Plenum Press, New York-London, pp. 115–149.

    Google Scholar 

  17. Byrn, S. R., Curtin, D. Y. and Paul I. C. (1972) The X-ray crystal structures of the yellow and white forms of dimethyl 3,6-dichloro-2,5-dihydrox terephthalate and a study of the conversion of the yellow form to the white form in the solid state. J..4m. Chem. Soc. 94, 890–898.

    Google Scholar 

  18. Katrusiak, A. (1994) Molecular motion and hydrogen-bond transformation in crystals of 1,3cyclohexanedione, in D. W. Jones and A. Katrusiak (eds.), Correlations,Transformations and Interactions in Organic Crystal Chemistry, Oxford University Press, pp. 93–113.

    Google Scholar 

  19. Etter, M. C., Urbaríczyk-Lipkowska, Z.. Jahn D. A. and Frye, J. S. (1986) Solid-state structural characterisation of 1,3- yclohexanedione and of a 6:1 cyclohexanedione:benzene cyclomer, a novel host-quest species. J. Am. Chem. Soc. 108. 5871–5876.

    Article  CAS  Google Scholar 

  20. Katrusiak, A (1991) The Structure and Phase Transition of 1,3-Cyclohexanedione Crystals as a Function of Temperature, Acta Cryst. B47. 398–404.

    CAS  Google Scholar 

  21. Katrusiak, A (1990) High-Pressure X-ray Diffraction Study on the Structure and phase Transition of 1,3-Cyclohexanedione Crystals, Acta Crvst. B46. 246–256.

    CAS  Google Scholar 

  22. Katrusiak, A (1992) Stereochemistry and transformation of -0H--O= hydrogen bonds. I. Polymorphism and phase transition of 1,3-cyclohexanedione crystals, J. Mol. Struct. 269, 329–354.

    Article  CAS  Google Scholar 

  23. Pajak, Z., Latanowicz, L. and Katrusiak, A (1992) NMR Study of Molecular Motions in 1,3Cyclohexanedione, Phys. Stat. Solidi (a) 130, 421–428.

    Article  CAS  Google Scholar 

  24. Pauling, L. and Brockway, L. O. (1934) Structure of the carboxyl group. I. Investigation of formic acid by the diffraction of electrons, Proc. Natl. Acad. Sci. US 20, 336–340.

    Article  CAS  Google Scholar 

  25. Karle, J. and Brockway, L. O. (1944) An electron-diffraction investigation of the monomers and dimers of formic, acetic and trifluoroacetic acids and the dimers of deuterium acetate, J. Am. Chem. Soc. 66, 574–584.

    Article  CAS  Google Scholar 

  26. Martinache, L., Kresa, W., Wegener, M., Vonmont, U. and Bauder, A. (1990) Microwave spectra and partial substitution structure of carboxylic acid bimolecules, Chem. Phys. 148, 129–140.

    Article  CAS  Google Scholar 

  27. Nagaoka, S., Terao, T., Imashiro, S., Saika, A., Hirota, N. and Hayashi, S. (1981) A study on the proton transfer in benzoic acid dieter by carbon-13 high-resolution solid-state NMR and proton T 1 measurements., Chem. Phys. Lett. 80, 580–584.

    Article  CAS  Google Scholar 

  28. Meier, B. H., Graf, F. and Ernst, R. R. (1982) Structure and dynamics of intermolecular hydrogen bonds in carboxylic acid dimers, J. Chem. Phys. 76, 767–774.

    Article  CAS  Google Scholar 

  29. Hayashi, S., Umemura, J., Kato, S. and Morokuina, K. (1984) Ab Initio Molecular Orbital Study on the Formic Acid Dimer, J. Phys. Chem. 88, 1330–1334.

    Article  CAS  Google Scholar 

  30. Katrusiak, A. (1996) Macroscopic and structural effects of hydrogen-bond transformations, Crystallogr. Rev. 5, 133–180.

    Article  CAS  Google Scholar 

  31. Katrusiak, A. (1996) Stereopopulation control in 3-(2,4-dimethyl-6-methoxyphenyl)-3-methylbutyric acid and proton stability in hydrogen-bonded carboxylic groups, J. Mol. Struct. 385, 71–80.

    Article  CAS  Google Scholar 

  32. Katrusiak, A (1999) Stereochemistry and transformations of NH- -N hydrogen bonds. Part I. Structural preferences for the H-site, J. Mol. Struct. 474, 125–133.

    Article  CAS  Google Scholar 

  33. Katrusiak, A (1993) Geometric effects of H-atom disordering in hydrogen-bonded ferroelectrics, Phys. Rev. B 48, 2992–3002.

    Article  CAS  Google Scholar 

  34. Bacon, G. E. and Pease, R S (1953) A neutron diffraction study of potassium dihydrogen phosphate by Fourier synthesis, Proc. Royal Society of London A 220, 397–421.

    Article  CAS  Google Scholar 

  35. Katrusiak, A (1995) Coupling of displacive and order-disorder transformations in hydrogen-bonded ferroelectrics, Phys. Rev. B 51, 589–592.

    Article  CAS  Google Scholar 

  36. Katrusiak, A (1996) Stereochemistry and transformation of —OH- -0= hydrogen bonds. II. Evaluation of T in hydrogen-bonded ferroelectrics from structural data, J Mol. Struct. 374, 177–189.

    Article  CAS  Google Scholar 

  37. Katrusiak, A (1996) Structural Origin of Tricritical Point in KDP-Type Ferroelectrics, Ferroelectrics 188, 5–10.

    Article  CAS  Google Scholar 

  38. Nagle, J. F., Mille, M. and Morovitz, H. J. (1980) Theory of hydrogen bonded chains in bioenergetics, J Chem. Phys. 72, 3952–3971.

    Article  Google Scholar 

  39. Katrusiak, A (1998) Modelling Hydrogen-bonded Crystal Structures beyond Resolution of Diffraction Methods, Pol. J. Chem. 72, 449–459.

    CAS  Google Scholar 

  40. Katrusiak, A and Szafrarísld, M (1999) Ferroelctricity in NH- -N hydrogen-bonded crystals, Phys. Rev. Lett. 82, 576–579.

    Article  CAS  Google Scholar 

  41. Katrusiak, A. (1996) Rigid H2O Molecule Model of Anomalous Thermal Expansion of Ices, Phys. Rev. Lett. 77, 4366–4369.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Katrusiak, A. (1999). Modelling Hydrogen-Bonded Structures at Thermodynamical Transformations. In: Braga, D., Grepioni, F., Orpen, A.G. (eds) Crystal Engineering: From Molecules and Crystals to Materials. NATO Science Series, vol 538. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4505-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4505-3_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5899-2

  • Online ISBN: 978-94-011-4505-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics