Skip to main content

The Prediction and Production of Polarity in Crystalline Supramolecular Materials

A general principle of polarity formation

  • Chapter
Crystal Engineering: From Molecules and Crystals to Materials

Part of the book series: NATO Science Series ((ASIC,volume 538))

Abstract

Spontaneous polarity formation in molecular crystals is a key issue in the design of materials featuring tensorial properties of interest to technical applications. This review discusses theoretical models for the prediction of spontaneous polarity formation in channel-type zeolites, channel-type inclusion compounds and organic solid solutions. Theoretical models presented here are based on a general principle of polarity formation, typical for growth processes where dipolar compounds are attached to surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chemla, D. S. and Zyss, J. (1987) Nonlinear optical properties of organic molecules and crystals 1 Academic Press, Inc., London;

    Google Scholar 

  2. Zyss, J. (1994) Molecular nonlinear optics, Academic Press, Inc., London

    Google Scholar 

  3. Bosshard, C., Sutter, K., Prêtre, P., Hulliger, J., Flörsheimer, M., Kaatz, P. and Günter, P. (1995) Organic nonlinear optical materials, Gordon and Breach, Basel

    Google Scholar 

  4. Hulliger, J., König, O. and Hoss, R. (1995) Polar inclusion compounds of perhydrotriphenylene and efficient nonlinear optical molecules, Adv. Mater. 7 719–721

    Article  CAS  Google Scholar 

  5. Hoss, R., König, O., Kramer-Hoss, V., Berger, U., Rogin, P. and Hulliger, J. (1996) Crystallization of supramolecular materials: perhydrotriphenylene (PHTP) inclusion compounds with nonlinear optical properties, Angew. Chem. Int. Ed. Engl. 35 1664–1666

    Article  CAS  Google Scholar 

  6. Hulliger, J., Langley, P. J., König, O., Roth, S. W., Quintel, A. and Rechsteiner P. (1998) A supramolecular approach to the parallel alignment of nonlinear optical molecules, Pure Appl. Opt. 7 221–227

    Article  CAS  Google Scholar 

  7. Hulliger, J., Rogin, P., Quintel, A., Rechsteiner, P., König, O. and Wübbenhorst, M. (1997) The crystallization of polar, channel-type inclusion compounds: property-directed supramolecular synthesis, Adv. Mater. 9 677–680;

    Article  Google Scholar 

  8. Roth, S. W., Langley, P. J., Quintel, A., Wübbenhorst, M., Rechsteiner, P., Rogin, P., König, O. and Hulliger J. (1998) Statistically controlled self-assembly of polar molecular crystals, Adv. Mater. 10 1543–1546;

    Article  Google Scholar 

  9. König, O., Bürgi, H.-B., Armbruster, T., Hulliger, J. and Weber, T (1997) A study in crystal engineering: structure, crystal growth, and physical properties of a polar perhydrotriphenylene inclusion compound J. Am. Chem. Soc. 119 10632–10640

    Article  Google Scholar 

  10. Hulliger, J., Roth, S. W.., Quintel, A. and Rechsteiner, P. (1998) On a rational principle for designing polar organic crystals, in J. Schreuer (ed.), Predictability of Physical Properties of Crystals, Berichte aus Arbeitskreisen der deutschen Gesellschaft für Kristallographie 2, Deutsche Gesellschaft für Kristallographie, Kiel, 9–24

    Google Scholar 

  11. Bürgi, H.-B. and Dunitz, J. D. (1994) Structure Correlation, Verlag Chemie, Weinheim

    Book  Google Scholar 

  12. Hulliger, J., Langley, P. J. and Roth, S. W. (1998) A new design strategy for efficient electro-optic single-component organic crystals, Cryst. Eng. Suppl. Mater. Res. Bull. 1, 177–189

    CAS  Google Scholar 

  13. Hulliger, J. (1999) Orientational disorder at growing surfaces of molecular crystals: general comments on polarity formation and on secondary defects, Z. Krist. 214 9–13

    Article  CAS  Google Scholar 

  14. Wilke, K.-Th. and Bohm, J. (1988) Kristallzüchtung, Verlag Harri Deutsch, Frankfurt; Bohm, J. (1995) Realstruktur von Kristallen,E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  15. Desjonquères, M. C. and Spanjaard, D. (1996) Concepts in surface physics, Springer-Verlag, Berlin

    Book  Google Scholar 

  16. Kitaigorodsky, A. I. (1984) Mixed crystals, Solid State Sciences 33 Springer-Verlag, Berlin

    Book  Google Scholar 

  17. Meyer, K. (1977) Physikalisch-chemische Kristallographie, VEB Verlag fir Grundstoffindustrie, Leipzig

    Google Scholar 

  18. Ragone, D. V. (1995) Thermodynamics of materials 1 and 2, John Wiley & Sons, Inc., New York

    Google Scholar 

  19. a) Bebie, H. and Hulliger, J. (to be published), work on the ordering behaviour of a single layer grown on a homogeneous substrate; b) an analysis of the difference in the thermodynamic description of the channel-type system assuming equilibrium for i) the volume or (ii) the surface; c) stochastic treatment of the 3D growth of dipolar materials (layer-by-layer growth)

    Google Scholar 

  20. Hulliger, J. (1998) On an intrinsic mechanism of surface defect formation producing polar, multidomain real-structures in molecular crystals, Z. Kristallogr. 213 441–444

    Article  CAS  Google Scholar 

  21. Weissbuch, I., Popovitz-Biro, R., Lahav, M. and Leiserowitz, L. (1995) Understanding and control of nucleation, growth, habit, dissolution and structure of two-and three-dimensional crystals using ‘tailor-made’ auxiliaries, Acta Cryst. B51 115–148

    CAS  Google Scholar 

  22. Marlow, F., Wübbenhorst, M. and Caro, J. (1994) Pyroelectric effects on molecular sieve crystals loaded with dipole molecules, J. Phys. Chem. 98 12315–12319;

    Article  CAS  Google Scholar 

  23. Klap, G. J., Van Klooster, S. M., Wübbenhorst, M., Jansen, J. C., Van Bekkum, H. and Van Turnhout, J. (1998) Polarization reversal in A1PO4-5 crystals containing polar or nonpolar organic molecules: a scanning pyroelectric microscopy study, J. Phys. Chem. B 102 9518–9524

    Article  CAS  Google Scholar 

  24. Farina, M. (1984) Inclusion compounds of perhydrotriphenylene, in J. L. Atwood, J. E. D. Davis and D. D. MacNicol (eds.), Inclusion Compounds 2 Academic Press, Inc, London, 69–95;

    Google Scholar 

  25. Allegra, G., Farina, M., Immirzi, A., Colombo, A., Rossi, U., Broggi, R. and Natta, G. (1967) Inclusion compounds in perhydrotriphenylene. Part 1. The crystal structure of perhydrotriphenylene and of some inclusion compounds, J. Chem. Soc. B, 1020–1028

    Google Scholar 

  26. Kemeny, J. G. and Snell, J. L. (1983) Finite Markov chains, D. van Nostrand Company, Inc., London;

    Google Scholar 

  27. Iosifescu, M. (1980) Finite Markov processes and their applications, John Wiley & Sons, Inc., New York;

    Google Scholar 

  28. Bharucha-Reid, A. T. (1960) Elements of the theory of Markov processes and their applications, McGraw-Hill Book Company, Inc., New York

    Google Scholar 

  29. Quintet, A., Roth, S. W. and Hulliger, J. (submitted) 3D-Imaging and simulation of the polarisation distribution in molecular crystals, Mol. Cryst. Liq. Cryst. A

    Google Scholar 

  30. Hulliger, J., Quintet, A., Wübbenhorst, M., Langley, P. J., Roth, S. W. and Rechsteiner, P. (1998) Theory and pyroelectric characterization of polar inclusion compounds of perhydrotriphenylene, Opt. Mater. 9 259–264

    Article  CAS  Google Scholar 

  31. Hulliger, J., Langley, P. J., Quintet, A., Rechsteiner, P. and Roth, S. W. (1999) The prediction and production of polar molecular materials, in J. Veciana, C. Rovira, D. B. Amabilino (eds.), Supramolecular engineering of synthetic metallic materials: conductors and magnets, Kluwer Academic Publishers, Dordrecht, 67–81

    Chapter  Google Scholar 

  32. Desiraju, G. R. (1995) Supramolecular synthons in crystal engineering - a new organic synthesis, Angew. Chem. Int. Ed. Engl. 34 2311–2327

    Article  CAS  Google Scholar 

  33. König, O. and Hulliger, J. (1997) Channel-type inclusion lattices of perhydrotriphenylene: a new route to orientationally confined nonlinear optical molecules, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect B, Nonlinear Optics, 17, 127–139

    Google Scholar 

  34. Wagner, C. and Schottky, W. (1931) Theorie der geordneten Mischphasen, Z. physik. Chem. B 11 163–210;

    Google Scholar 

  35. Schottky, W. (1935) Über den Mechanismus der Ionenbewegung in festen Elektrolyten, Z. physik. Chem B 29 335–355

    Google Scholar 

  36. Sarma, J. A. R. P., Allen, F. H., Hoy, V. J., Howard, J. A. K., Thaimattam, R., Biradha, K. and Desiraju, G. R. (1997) Design of an SHG-active crystal, 4-iodo-4’nitrobiphenyl: the role of supramolecular synthons, Chem. Commun. 101–102;

    Google Scholar 

  37. Hulliger, J. and Langley, P. J. (1998) On intrinsic and extrinsic defect-forming mechanisms determining the defect structure of 4-iodo-4’-nitrobiphenyl crystals, Chem. Commun., 2557–2558

    Article  Google Scholar 

  38. A mean field description shows that in some cases the substrate state can have an influence on the final state.

    Google Scholar 

  39. This point needs much more discussion than can be provided here. The general case of polarity formation in single component crystals is presently analysed by means of stochastic simulations and an analytical mean-field description [16c].

    Google Scholar 

  40. See this book: contributions by M. Schmidt or A. Gavezzotti and including references.

    Google Scholar 

  41. Tam, W., Eaton, D. F., Calabrese, J. C., Williams I. D., Wang, Y. and Anderson, A. G. (1989) Channel inclusion complexation of organometallics: dipolar alignment for second harmonic generation, Chem. Mater. 1, 128–140

    Article  CAS  Google Scholar 

  42. Wong, M. S., Bosshard, C. and Günter, P. (1997) Crystal engineering of molecular NLO materials, Adv. Mater. 9 837–842

    Article  CAS  Google Scholar 

  43. Knöpfle, G., Bosshard, C., Schlesser R. and Günter, P. (1994) Optical, nonlinear optical, and electrooptical properties of 4’-nitrobenzylidene-3-acetamino-4methoxyaniline (MNBA) crystals, IEEEJ. Quantum Electron. 30 1303–1312

    Article  Google Scholar 

  44. Masciocchi, N., Bergamo, M. and Sironi, A. (1998) Comments on the elusive crystal structure of 4-iodo-4’-nitrobiphenyl, Chem. Commun. 1347–1348

    Google Scholar 

  45. Duan, X. M., Okada, S., Nakanishi, H., Watanabe, A., Matsuda, M., Clays, K., Persoons, A. and Matsuda, H. (1994) Evaluation of 13 of stilbazolium ptoluenesulfonates by the hyper Raleigh scattering method, Proc. SPIE 2143 41–51;

    Article  CAS  Google Scholar 

  46. Okada, S., Masaki, A., Matsuda, H., Koike, T., Ohmi, T. and Yoshikawa, N. (1990) Merocyanine-p-toluenesulfonic acid complex with large second order optical nonlinearity, Proc. SPIE 1337 178–183

    Article  CAS  Google Scholar 

  47. Wong, M. S., Pan, F., Bösch, M., Spreiter, R., Bosshard, C., Günter, P. and Gramlich, V. (1998) Novel electro-optic molecular crystals with ideal chromophoric orientation and large second-order nonlinearities, J. Opt. Soc. Am. B 15, 426–431

    Google Scholar 

  48. Shiahuy Chen, G., Wilbur, J. K., Barnes, C. L. and Glaser, R. (1995) Push-pull substitution versus intrinsic or packing related N-N gauche preferences in azines. Synthesis, crystal structures and packing of asymmetrical acetophenone azines, J. Chem. Soc. Perkin Trans. 2 2311–2317

    Google Scholar 

  49. Cox, S. D. Gier, T. E., Stucky, G. D. and Bierlein, J. D. (1988) Inclusion tuning of nonlinear optical materials: switching the SHG of p-nitroaniline and 2-methyl-pnitroaniline with molecular sieve hosts, J. Am. Chem. Soc. 110 2986–2987;

    Article  Google Scholar 

  50. Girnus, I. Pohl, M.-M., Richter-Mendau, J., Schneider, M., Noack, M., Venzke, D. and Caro, J. (1995) Synthesis of A1PO4-5 aluminiumphosphate molecular sieve crystals for membrane applications by microwave heating, Adv. Mater. 7 711–714

    Article  CAS  Google Scholar 

  51. Ramamurthy, V. and Eaton, D. F. (1994) Perspectives on solid-state host-guest assemblies, Chem. Mater. 6 1128–1136

    Article  CAS  Google Scholar 

  52. Tomaru, S., Zembutsu, S., Kawachi, M. and Kobayashi, M. (1984) Second harmonic generation in inclusion complexes, J. Chem. Soc., Chem. Commun. 1207–1208;

    Google Scholar 

  53. Eaton, D. F. Anderson, A. G., Tam, W. and Wang, Y. (1987) Control of bulk dipolar alignment using guest-host inclusion chemistry: new materials for second-harmonic generation, J. Am. Chem. Soc. 109 1886–1888

    CAS  Google Scholar 

  54. Hulliger, J., Bebie, H. and Roth, S. W., preliminary results derived of a mean-field model (see chap. 2) using Eqs. 7, 8. These equations are not appropriate to describe the process of predominantly anti-parallel ordering.

    Google Scholar 

  55. Langley, P. J. and Hulliger, J. (1999) Nanoporous and mesoporous organic structures: new openings for materials research, Chem. Soc. Rev., submitted

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hulliger, J., Roth, S.W., Quintel, A. (1999). The Prediction and Production of Polarity in Crystalline Supramolecular Materials. In: Braga, D., Grepioni, F., Orpen, A.G. (eds) Crystal Engineering: From Molecules and Crystals to Materials. NATO Science Series, vol 538. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4505-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4505-3_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5899-2

  • Online ISBN: 978-94-011-4505-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics