Skip to main content

Introduction to Packing Patterns and Packing Energetics of Crystalline Self-Assembled Structures

Predicting Crystal Structures using Kitaigorodskii’s Aufbau Principle

  • Chapter
Crystal Engineering: From Molecules and Crystals to Materials

Part of the book series: NATO Science Series ((ASIC,volume 538))

  • 559 Accesses

Abstract

To understand how molecules assemble themselves in crystalline forms requires knowledge of space group symmetry. The complexity of the symmetry relationships between molecules, although well understood by crystallographers, makes it very difficult for others to understand the chemical significance of the close packing interactions present in the solid state. With the use of Kitaigorodskii’s Aufbau Principle (KAP) and a few simple ideas concerning symmetry and the energetics of packing, complex crystal structures can be analyzed in terms of the substructures that make them up. KAP analysis along with some simple molecular simulation methods can be used to predict crystal structures of arbitrary shaped molecules in specific space groups, even those that have numerous internal rotational degrees of freedom.

Article Footnote

“The following is the most useful way for dealing with packing in molecular crystals. We must first of all deduce all possible methods of constructing chains of molecules (formations extending in one dimension) and then demonstrate what layers are possible (formations extending in two dimensions), followed finally by considering layer stacking in the crystal (a formation extending in three dimensions) ”A. L Kitaigorodskii

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kitaigorodskii, A.I. (1961) Organic Chemical Crystallography, Consultants Bureau, NY, p. 67.

    Google Scholar 

  2. Dahl, T. (1994) The Nature of Stacking Interactions between Organic Molecules Elucidated by Analysis of Crystal Structures, Acta Chem. Scand. 48, 95–106.

    Article  CAS  Google Scholar 

  3. Sharma, C.C.K. and Rogers, R.D. (1998) CH---X (X=N,O) Hydrogen Bond-Mediated Assembly of Donors and Acceptors: The Crystal Structures of Phenazine Complexes with 1,4-Dinitrobenzene and TCNQ, Crystal Engineering 1, 139–145.

    Article  CAS  Google Scholar 

  4. Brandon, E.J., Arif, A.M., Miller, J.S., Suguira, K.-I., and Burkhart, B.M. (1998) The Structure of Several Supramolecular Meso-Tetraaryl porphinatomanganese(III) Tetracyanoethanide Magnets, Crystal Engineering 1, 97–107.

    Article  CAS  Google Scholar 

  5. Braga, D., Grepioni, F., and Desiraju, G.R. (1998) Crystal Engineering and Organometallic Architecture, Chemical Reviews 98, 1375–1405.

    Article  CAS  Google Scholar 

  6. Hajek, F., Graf, E., Hosseini, M.W., De Cian, A., and Fisher, J. (1998) Crystal Engineering: Formation of 1D-Networks Based on the Self-Assembly of Self-Complimentary Hollow Molecular Modules in the Solid State, Crystal Engineering 1, 79–85.

    Article  CAS  Google Scholar 

  7. Shubnik.,v, A.V. and Koptsik, V.A. (1974) Symmetry in Science and Art, Plenum Press, NY, pp. 103–127.

    Book  Google Scholar 

  8. Scaringe, R.P. and Perez, S. (1987) A Novel Method for Calculating the Structure of Small-Molecule Chains on Polymeric Templates, J. Phys. Chem. 91, 2394–2403.

    Article  CAS  Google Scholar 

  9. Lapasset, J., Escande, A., and Falgueirettes, J. (1972) Structure Cristalline et Moléculaire de l’Acétyl-1-Bromo-4-Pyrazole, Acta Crystallogr. B28, 3316–3321.

    Google Scholar 

  10. Brock, C.P. and Dunitz, J.D. (1994) Towards a Grammar of Crystal Packing, Chem. Mater. 6, 1118–1127.

    Article  CAS  Google Scholar 

  11. Ulman, A. (1991)An Introduction to Ultra Thin Organic Films, Academic Press, Boston.

    Google Scholar 

  12. Rabe, J.P. (1992) Nanostructures Based on Molecular Materials„ W. Gopel and C. Ziegler (eds.) VCH, Weinheim, pp 313–327.

    Google Scholar 

  13. Patrick, D.L. and Beebe, T.P., Jr. (1994) Substrate Defects and Variations in Interfacial Ordering of Monolayer Molecular Films on Graphite, Langmuir 10, 298–302.

    Article  CAS  Google Scholar 

  14. Scaringe, R.P. (1990) A Theoretical Technique for Layer Structure Prediction, in J.R. Fryer and D.L. Dorset (eds.), Electron Crystallography of Organic Molecules, Kluwer Academic Publishers, Dordrecht, pp. 85–113.

    Google Scholar 

  15. Wood, E.A. (1964) The 80 Diperiodic Groups in Three Dimensions, Bell Sys. Tech. J. 43, 541–559.

    Google Scholar 

  16. Wood, E.A. (1964) The 80 Diperiodic Groups in Three Dimensions, Monograph 4680-Bell Telephone System Technical Publication, AT&T Archives, Murray Hill.

    Google Scholar 

  17. Allen, F.H. and Kennard, O. (1993) 3D Search and Research Using the Cambridge Structural Database, Chem. Design Automat. News 8, 31–37.

    Google Scholar 

  18. Allinger, N.L. (1977) Conformational Analysis 130. MM2. A Hydrocarbon Force Field Utilizing V1 and V2 Torsional Terms, J. Am. Chem. Soc. 99, 8127–8134.

    Article  CAS  Google Scholar 

  19. Discover User Guide, Version 2.8 Part 2,Biosym Technologies(now Molecular Simulations Inc.), San Diego.

    Google Scholar 

  20. Weiner, S.J., Kollman, P.A., Nguyen, D.T., and Case, D.A. (1986) An All Atom Force Field for Simulations of Proteins and Nucleic Acids, J. Comp. Chem. 7, 230–252.

    Article  CAS  Google Scholar 

  21. Coombes, D.S., Price, S.L., Willock, D.J., and Leslie, M. (1996) Role of Electrostatic Interactions in Determining the Crystal Structures of Polar Organic Molecules. A Distributed Multipole Study, J. Phys. Chem. 100, 7352–7360.

    Article  CAS  Google Scholar 

  22. Smith, E.R. (1981) Electrostatic Energy in Ionic Crystals, Proc. R. Soc. Lond. A 375, 475–505.

    Article  CAS  Google Scholar 

  23. Catti, M. (1978) Electrostatic Lattice Energy in Ionic Crystals: Optimization of the Convergence of Ewald Series, Acta Crystallogr. A34, 974–979.

    CAS  Google Scholar 

  24. Busing, W.R. (1978) An Error in the Calculation of the Rotational Barrier in Molecular Crystals, J. Phys. Chem. Solids 39, 691.

    Article  CAS  Google Scholar 

  25. CHEMX/CHEMLIB is a molecular modeling program distributed by the Oxford Molecular Group at http://www.oxmol.com/chemdesign/products.html

  26. Perlstein, J. (1994) Molecular Self-Assemblies. 4. Using Kitaigorodskii’s Aufbau Principle for Quantitatively Predicting the Packing Geometry of Semiflexible Organic Molecules in Translation Monolayer Aggregates, J. Am. Chem. Soc. 116, 11420–11432.

    Article  CAS  Google Scholar 

  27. Abdallah, D., Bachman, R.E., Perlstein, J., and Weiss, R. (1999) Crystal Structures of Symmetrical teta-n-Alkyl Ammonium and Phosphonium Halides. Dissection of Competing Interactions Leading to‘Biradial’ and ‘Tetraradial’ Shapes, J. Phys. Chem to be published.

    Google Scholar 

  28. Perlstein, J., Steppe, K., Vaday, S., and Ndip, E.M.N. (1996) Molecular Self-Assemblies. 5. Analysis of the Vector Properties of Hydrogen Bonding in Crystal Engineering, J Am. Chem. Soc. 118, 8433–8443.

    Article  CAS  Google Scholar 

  29. Nangia, A. and Desiraju, G.R. (1998) Supramolecular Synthons and Pattern Recognition, Topics in Current Chemistry 198, 57–95.

    Article  CAS  Google Scholar 

  30. Steiner, T. (1998) Donor and Acceptro Strengths in C-H---0 Hydrogen Bonds Quantified from Crystallographic Data of Small Solvent Molecules, New J. Chem. 22, 1099–1103.

    Article  CAS  Google Scholar 

  31. Doye, J.P.K. and Wales, D.J. (1996) On Potential Energy Surfaces and Relaxation to the Global Minimum, J. Chem. Phys. 105, 8428–8445.

    Article  CAS  Google Scholar 

  32. Verwer, P. and Leusen, F.J.J. (1998) Computer Simulation to Predict Possible Crystal Polymorphsin K.B. Lipkowitz and D.B. Boyd (eds.), Reviews in Computational Chemistry, Wiley-VCH, NY, pp. 327–365.

    Chapter  Google Scholar 

  33. Gavezzotti, A. (1991) Generation of Possible Crystal Structures from the Molecular Structure for Low-Polarity Organic Compounds, J. Am. Chem. Soc. 113, 4622–4629.

    Article  CAS  Google Scholar 

  34. Whitten, D.G., Chen, L., Geiger, H.C., Perlstein, J., and Song, X. (1998) Self-Assembly of Aromatic-Functionalized Amphiphiles: The Role and Consequences of Aromatic-Aromatic Noncovalent Interactions in Building Supramolecular Aggregates and Novel Assemblies, J. Phys. Chem. B 102, 10098–10111 and references therein.

    CAS  Google Scholar 

  35. Williams, D.E. (1996) Ab Initio Molecular Packing Analysis, Acta Crystallogr. A52, 326–328.

    CAS  Google Scholar 

  36. Wawak, R.J., Pillardy, J., Liwo, A., Gibson, K.D., and Scheraga, H.A. (1998) Diffusion Equation and Distance Scaling Methods of Global Optimization: Applications to Crystal Structure Prediction, J. Phys. Chem. 102, 2904–2918.

    Article  CAS  Google Scholar 

  37. Binder, K. (1997) Applications of Monte Carlo Methods to Statistical Physics, Rep. Prog. Phys. 60, 487–559.

    Article  CAS  Google Scholar 

  38. Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. (1983) Optimization by Simulated Annealing Science 220, 671–680.

    Article  CAS  Google Scholar 

  39. Perlstein, J. (1992) Molecular Self-Assemblies: Monte Carlo Predictions for the Structure of the One-Dimensional Translation Aggregate, J. Am. Chem. Soc. 114, 1955–1963,.

    Article  CAS  Google Scholar 

  40. Perlstein, J. (1994) Molecular Self-Assemblies. 2. A Computational Method for the Prediction of the Structure of One-Dimensional Screw, Glide, and Inversion Molecular Aggregates and Implications for the Packing of Molecules in Monolayers and Crystals, J. Am. Chem. Soc. 116, 455–470.

    Article  CAS  Google Scholar 

  41. Perlstein, J. (1994) Molecular Self-Assemblies. 3. Quantitative Predictions for the Packing Geometry of Perylenedicarboximide Translation Aggregates and the Effects of Flexible End Groups. Implications for Monolayers and Three-Dimensional Crystal Structure Predictions, Chem. Mat. 6, 319–326.

    Article  CAS  Google Scholar 

  42. PACK is a series of Monte Carlo routines for packing chains, layers, and crystals. It is available as part of the CHEMX/CHEMLIB molecular modeling package. Contact the author at http://perlstein@chem.chem.rochester.edu

    Google Scholar 

  43. Swanson, D.R., Hardy, R.J., and Eckhardt, C.J. (1994) A Cross-Section Potential for Calculation of Close Packing Geometries of Monolayer Films, Thin Solid Films 244, 824–826.

    Article  CAS  Google Scholar 

  44. Anthony, A., Desiraju, G.R., Jetti, R.K.R., Kuduva, S.S., Madhavi, N.N.L., Nangia, A., Thaimattam, R., and Thalladi, V.R. (1998) Crystal Engineering: Some Further Strategies, Crystal Engineering 1, 1–18.

    Article  CAS  Google Scholar 

  45. Bernstein, J. and Henck, J.-O. (1998) Disappearing and Reappearing Polymorphs- An Anathema To Crystal Engineering Crystal Engineering 1, 119–128.

    Article  CAS  Google Scholar 

  46. Gavezzotti, A. and Filippini, G. (1995) Polymorphic Forms of Organic Crystals at Room Conditions: Thermodynamic and Structural Implications, J. Am. Chem. Soc 117, 12299–12305.

    Article  CAS  Google Scholar 

  47. Caira, M.R. (1998) Crystalline Polymorphism of Organic Compounds, Topics in Current Chemistry 198, 163–208.

    Article  CAS  Google Scholar 

  48. Hargittai, I. and Hargittai, M. (1995) Symmetry Through the Eyes of a Chemist, Plenum Press, NY, pp. 446–458.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Persltein, J. (1999). Introduction to Packing Patterns and Packing Energetics of Crystalline Self-Assembled Structures. In: Braga, D., Grepioni, F., Orpen, A.G. (eds) Crystal Engineering: From Molecules and Crystals to Materials. NATO Science Series, vol 538. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4505-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4505-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5899-2

  • Online ISBN: 978-94-011-4505-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics