Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 538))

Abstract

Solids that crystallize in acentric space groups are predisposed to exhibit useful bulk physical properties in the context of new materials for electrooptical applications’, especially devices based upon second-order nonlinear optic (NLO), piezoelectric, pyroelectric or ferroelectric activity. It should therefore be unsurprising that the pursuit of new classes of acentric, or polar, solids has been ongoing for many years. Although a crystallographic center of inversion can be precluded by building materials from homochiral components, there are two significant limitations: (1) requirements for homochiral starting materials and/or products are significant hurdles for synthetic chemists; (2) the use of homochiral building blocks does not in any way ensure optimum alignment of dipoles. The potential importance of new design strategies that are independent of the need for chiral building blocks should therefore be apparent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agullo-Lopez, F., Cabrera, J. M. and Agullo-Rueda, F. (1994) Electrooptics: Phenomena, Materials and Applications, Academic Press, New York;

    Google Scholar 

  2. Zyss, J. (1993) Molecular Nonlinear Optics: Materials, Physics and Devices, Academic Press, New York.

    Google Scholar 

  3. Koshima, H. and Matsuura, T. (1998) J. Synth. Org. Chem. Jpn., 56 268–279;

    Article  CAS  Google Scholar 

  4. Koshima, H. and Matsuura, T. (1998) J. Synth. Org. Chem. Jpn., 56 466–477;

    Article  CAS  Google Scholar 

  5. Whitesell, J. K., Davis, R. E., Wong, M.-S. and Chang, N.-L. (1994) J. Am. Chem. Soc.,116 523–527;

    Article  CAS  Google Scholar 

  6. Green, B. S., Lahav, M. and Rabinovich, D. (1979) Acc. Chem. Res., 12 191–197.

    Article  CAS  Google Scholar 

  7. of 190,306 compounds in the Cambridge Structural Database (v. 5.16, October 1998 release) crystallize in acentric space groups (24.2%).

    Google Scholar 

  8. Desiraju, G. R. (1989) Crystal Engineering: The Design of Organic Solids, Elsevier, New York;

    Google Scholar 

  9. Lehn, J.-M. (1995) Supramolecular Chemistry: Concepts and Perspectives,VCH Publishers, New York;

    Book  Google Scholar 

  10. Desiraju, G. R. (1995) Angew. Chem. Int. Ed. Engl., 34 2311–2327.

    Article  CAS  Google Scholar 

  11. Evans, O. R., Xiong, R.-G., Wang, Z., Wong, G. K. and Lin, W. (1999) Angew. Chem. Int. Ed. Engl., 38 536–538;

    Article  CAS  Google Scholar 

  12. Batten, S. R. and Robson, R. (1998) Angew. Chem. Int. Ed. Engl., 37 1460–1494;

    Article  Google Scholar 

  13. Zaworotko, M. J. (1994) Chem. Soc. Rev., 23 283–288;

    Article  CAS  Google Scholar 

  14. MacGillivray, L. R. Subramanian, S. and Zaworotko, M. J. (1994) J. Chem. Soc., Chem. Commun., 1325–1326;

    Google Scholar 

  15. Lopez, S., Kahraman, M., Harmata, M. and Keller, S. W. (1997) Inorg. Chem., 36 6138–6140;

    Article  CAS  Google Scholar 

  16. Hirsch, K. A., Venkataraman, D., Wilson, S. R., Moore, J. S. and Lee, S. (1995) J. Chem. Soc., Chem. Commun., 2199–2200;

    Google Scholar 

  17. Kim, K.-W. and Kanatzidis (1992) J. Am. Chem. Soc., 114 4878–4883;

    Article  CAS  Google Scholar 

  18. Munukata, M., Wu, L. P., Yamamoto, M., Kuroda-Sowa, M. and Maekawa, M. (1996) J. Am. Chem. Soc., 118 3117–3124;

    Article  Google Scholar 

  19. Michaelides, A., Kiritsis, V., Skoulika S. and Aubry, A. (1993) Angew. Chem. Int. Ed. Engl., 32 1495–1497;

    Article  Google Scholar 

  20. Sinzger, K., Hunig, S., Jopp, M., Bauer, D., Bietsch, W., von Shutz, J. U., Wolf, H. C., Kremer, R. K., Metzenthin, T., Bau, R., Khan, S. I., Lindbaum, A., Langauer, C. L. and Tillmanns, E. (1993) J. Am. Chem. Soc.,115 7696–7705;

    Article  CAS  Google Scholar 

  21. Robson, R., Abrahams, B. F., Batten, S. R., Gable, R. W., Hoskins, B. and Liu, J. (1992) ACS Symp. Ser.: Supramolecular Architectures 499 257–273;

    Google Scholar 

  22. Copp, S. B., Holman, K. T., Sangster, J. O. S., Subramanian, S. and Zaworotko, M. J. (1995) J. Chem. Soc., Dalton Trans. 2233–2243.

    Google Scholar 

  23. Bowyer, P. K., Porter, K. A., Rae, A. D., Willis, A. C. and Wild, S. B. (1998)J. Chem. Soc., Chem. Commun., 1153–1154;

    Google Scholar 

  24. Rowan, A. E., and Nolte, R. J. M. (1998) Angew. Chem. Int. Ed. Eng1., 37 63–68;

    Article  CAS  Google Scholar 

  25. Zaworotko, M. J. (1998) Angew. Chem. Int. Ed. Engl., 37 1211–1213;

    Article  CAS  Google Scholar 

  26. Masciocchi, N., Ardizzoia, G. A., LaMonica, G., Maspero, A., and Sironi, A. (1998) Angew. Chem. Int. Ed. Engl., 37 3366–3369;

    Article  CAS  Google Scholar 

  27. Wu, B., Zhang, W.-J., Yu, S.-Y. and Wu, X.-T. (1997) J. Chem. Soc., Dalton Trans., 1795–1796;

    Google Scholar 

  28. Piquet, C., Bernardinelli, G., Hopfgartner, G. (1997) Chem. Rev., 97 2005–2062;

    Article  Google Scholar 

  29. Moore, J. S. (1996) Curr. Opin. Solid State Mater. Sci., 1 777–787;

    Article  CAS  Google Scholar 

  30. Williams, A. F. (1997) Chem. Eur. 1 3 15–19;

    Article  Google Scholar 

  31. Constable, E. C. (1992) Tetrahedron, 48 10013–10059;

    Article  CAS  Google Scholar 

  32. Withersby, M. A., Blake, A. J., Champness, N. R., Hubberstey, P., Li, W.-S. and Schroder, M. (1997) Angew. Chem. Int. Ed. Engl., 36 2327–2329;

    Article  CAS  Google Scholar 

  33. Ranford, J. D., Vittal, J. J. and Wu, D. (1998) Angew. Chem. Int. Ed. Engl., 37 1114–1116;

    Article  CAS  Google Scholar 

  34. Biradha, K., Seward, C. and Zaworotko, M. J. (1999) Angew. Chem. Int. Ed. Engl., 38 492–495;

    Article  CAS  Google Scholar 

  35. Soghomonian, V., Chen, Q., Haushalter, R. C., Zubieta, J. and O’Connor, C. J. (1993) Science 259 1596–1599;

    Article  CAS  Google Scholar 

  36. Gelling, O. J., van Bolhuis, F. and Feringa, B. L. (1991)1 Chem. Soc., Chem. Commun., 917–919;

    Google Scholar 

  37. Dai, Y., Katz, T. J. and Nichols, D. A. (1996) Angew. Chem. Int Ed. Engl., 35 2109–2111;

    Article  CAS  Google Scholar 

  38. Kaes, C., Hosseini, M. W., Rickard, C. E. F., Skelton, B. W. and White, A. H. (1998) Angew. Chem. Int Ed. Eng1., 37 920–922;

    Article  CAS  Google Scholar 

  39. Fleming, J. S., Mann, K. L. V., Couchman, S. M., Jeffrey, J. C., McLeverty, J. A. and Ward, M. D. (1998)1 Chem Soc., Dalton Trans., 2047;

    Google Scholar 

  40. Endo, K. (1999) The 62nd Okazaki Conference: Structural Hierarchy in Molecular Science From Nano-and Mesostructures to Macrostructures, Okazaki, Japan (Abstract L6).

    Google Scholar 

  41. Konig, O., Burgi, H.-B., Armbruster, T., Hulliger, J. and Weber, T. (1997) 1. Am. Chem. Soc., 119 10632–10640;

    Article  Google Scholar 

  42. Ramamurthy, V. and Eaton, D. F. (1994) Chem. Mater., 6 1128–1136;

    Article  CAS  Google Scholar 

  43. Hoss, R., Konig, O., Kramer-Hoss, V., Berger, U., Rogin, P. and Hulliger, J. (1996) Angew. Chem. Int. Ed. Engl, 35 1664–1666;

    Article  CAS  Google Scholar 

  44. Hulliger, J., Langley, P. J., Konig, O., Quintel, A. and Rechsteiner, P. (1998) Pure Appl. Opt., 7 221–227;

    Article  CAS  Google Scholar 

  45. Brown, M. E. and Hollingsworth, M. D. (1995) Nature, 376 323–327;

    Article  CAS  Google Scholar 

  46. Hollingsworth, M. D., Brown, M. E., Hillier, A. C., Santarsiero, B. D. and Chaney, J. D. (1996) Science,273 1355–1359;

    Article  CAS  Google Scholar 

  47. Bishop, R. (1996) Comprehensive Supramolecular Chemistry, Vol.6 Pergamon, Oxford (pp. 85–115).

    Google Scholar 

  48. Lehn, J.-M., Mascal, M., DeCian, A. and Fischer, J. (1990) J. Chem. Soc., Chem. Commun., 479–481;

    Google Scholar 

  49. Zerkowski, J. A., Seto, C. T. and Whitesides, G. M. (1992) J. Am. Chem. Soc., 114 5473–5475;

    Article  CAS  Google Scholar 

  50. Geib, J. S., Vicent, C., Fan, E. and Hamilton, A. D. (1993) Angew. Chem. Int. Ed. Engl., 32 119–121;

    Article  Google Scholar 

  51. Etter, M. C. and Huang, K.-S. (1992) Chem. Mater. 4 272–278;

    Article  Google Scholar 

  52. Panunto, T. W., Urbanczyk-Lipkowska, Z., Johnson, R. and Etter, M. C. (1987) J. Am. Chem. Soc., 109 7786–7797;

    Article  CAS  Google Scholar 

  53. Pecaut, J., LeFur, Y. and Masse, R. (1993) Acta. Crystallogr.,B49 535–541.

    CAS  Google Scholar 

  54. Frankenbach, G. M. and Etter, M. C. (1992) Chem. Mater.,4 272.

    Article  CAS  Google Scholar 

  55. Leiserowitz, L. (1976) Acta. Crystallogr., B32 775–802;

    CAS  Google Scholar 

  56. Gorbitz, C. M. and Etter, M. C. (1992)J. Chem. Soc., Perkin Trans. 2, 131–135.

    Google Scholar 

  57. Melendez, R., Robinson, F. and Zaworotko, M. J. (1996) Supermolecular Chemistry, Vol.7, Gordon and Breach, Malaysia (pp. 275–293);

    Google Scholar 

  58. Pepinsky, R., Vedam, K., Hoshino, S. and Okaya, Y. (1958) Phys. Rev., 111 1508;

    Article  CAS  Google Scholar 

  59. Pepinsky, R. and Vedam, K. (1960) Phys. Rev., 117 1502;

    Article  CAS  Google Scholar 

  60. Payan, F. and Haser, R. (1976) Acta. Crystallogr.,B32 1875–1879.

    CAS  Google Scholar 

  61. Bosshard, C., Sutter, K., Pretre, P., Hulliger, J., Florsheimer, M., Kaatz, P. and Gunter, P. (1995) Advances in Nonlinear Optics, Vol.1, Gordon and Breach, New York;

    Google Scholar 

  62. Chemla, D. S. and Zyss, J. (1987) Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 1, 2, Academic Press, New York.

    Google Scholar 

  63. Fujita, M., Kwon, Y. J., Washizu, S. and Ogura, K. (1994) J. Am. Chem. Soc.,116 1151;

    Article  CAS  Google Scholar 

  64. MacGillivray, L. R., Groeneman, R. H. and Atwood, J. L. (1998) J. Am. Chem. Soc., 120 2676;

    Article  CAS  Google Scholar 

  65. Gable, R. W., Hoskins, B. F. and Robson, R. (1990) J. Chem. Soc., Chem. Commun., 1677;

    Google Scholar 

  66. Subramanian, S. and Zaworotko, M. J. (1995) Angew. Chem. Int. Ed. Engl., 35 2127;

    Article  Google Scholar 

  67. Lu, J., Paliwala, T., Lim, S. C., Yu, C., Niu, T. and Jacobsen, A. J. (1997) Inorg. Chem., 36 923.

    Article  CAS  Google Scholar 

  68. Thalladi, V. R., Brasselet, S., Weiss, H.-C., Blaser, D., Katz, A. K., Carrell, H. L., Boese, R., Zyss, J., Nangia, A. and Desiraju, G. R. (1998)i Am. Chem. Soc., 120 2563;

    Article  CAS  Google Scholar 

  69. Lin, W., Wang, Z. and Xiong, R.-G. (1998) Materials Research Society, Fall Meeting, Boston, Abstract U1.1.

    Google Scholar 

  70. Allman, R. (1970) Z. Kristallogr., 132 129;

    Article  Google Scholar 

  71. Kai, Y., Hama, F., Yasuoka, N. and Kasai, N. (1978) Acta Crystallogr., Sect. B 34 1263.

    Article  Google Scholar 

  72. Mague, J. T., Foroozesh, M., Hopkins, N. E., Gan, L. L.-S. and Alworth, W. L. (1997) J. Chem. Crystallogr., 27 183–189;

    Article  CAS  Google Scholar 

  73. Hazell, A. C. and Jagner, S. (1976) Acta Crystallogr., Sect. B, 32 682;

    Article  Google Scholar 

  74. Hazell, A. C. and Weigelt, A. (1975) Acta Crystallogr., Sect. B,31 2891.

    Article  Google Scholar 

  75. ) Lin, W., Evans, O. R., Xiong, R.-G. and Wang, Z. (1998) J. Am. Chem. Soc., 120 13272–13273;

    Article  CAS  Google Scholar 

  76. Davies, C., Langler, R. F., Sharma, C. V. K. and Zaworotko, M. J. (1997) J. Chem. Soc., Chem. Commun., 567–568.

    Google Scholar 

  77. Endo, S., Chino, T., Tsuboi, S., and Koto, K. (1989) Nature, 340 452

    Article  CAS  Google Scholar 

  78. Ermer, O. and Eling, A. (1988) Angew. Chem. Int. Ed. Engl., 27 829–833;

    Article  Google Scholar 

  79. Ermer, O. (1988) J. Am. Chem. Soc.,110 3747–3754.

    Article  CAS  Google Scholar 

  80. Wells, A. F. (1977) Three-Dimensional Nets and Polyhedra, Wiley, New York. (p. 27).

    Google Scholar 

  81. Hennigar, T. L., MacQuarrie, D. C., Losier, P., Rogers, R. D. and Zaworotko, M. J. (1997) Angew. Chem. Int. Ed. Engl., 36 972.

    Article  CAS  Google Scholar 

  82. Fujita, M., Kwon, Y. J., Sasaki, O., Yamaguchi, K. and Ogura, K. (1995) J Am. Chem. Soc., 117 7287;

    Article  CAS  Google Scholar 

  83. Losier, P. and Zaworotko, M. J. (1996) Angew. Chem. Int. Ed. Engl., 35 2779.

    Article  CAS  Google Scholar 

  84. Power, K. N., Hennigar, T. L. and Zaworotko, M. J. (1998) New J. Chem., 177.

    Google Scholar 

  85. Robinson, F. and Zaworotko, M. J. (1995) J. Chem. Soc., Chem. Commun., 2413;

    Google Scholar 

  86. Yaghi, O. M. and Li, H. (1996) J. Am. Chem. Soc., 118 295.

    Article  CAS  Google Scholar 

  87. Jorgensen, W. L. and Severance, D. L. (1990) J. Am. Chem. Soc., 112 4768.

    Article  CAS  Google Scholar 

  88. Bacon, G. E., Curry, N. A. and Wilson, S. A. (1964) Proc. R. Soc. London,Ser. A., 279 98.

    Article  CAS  Google Scholar 

  89. Roesky, H. W., Katti, K. V., Seseke, U., Schmidt, H.-G., Egert, E., Herbst, R. and Sheldrick, G. M. (1987) J. Chem. Soc., Dalton Trans., 847;

    Google Scholar 

  90. Lork, E., Watson, P. G. and Mews, R. (1995) J. Chem. Soc., Chem. Commun., 1717;

    Google Scholar 

  91. Vij, A., Staples, R. J., Kirchmeier, R. L. and Shreeve, J. M. (1996) Acta Crystallogr., Sect. C (Cr. Str. Comm.), 52 2515.

    Article  Google Scholar 

  92. Popovitz-Biro, R., Tang, C. P., Chang, H. C., Lahav, M. and Leiserowitz, L. (1985) J. Am. Chem. Soc., 107 4043;

    Article  CAS  Google Scholar 

  93. Giglio, E., Mazza, F. and Scaramuzza (1985) J. Inclusion Phenom., 3 437;

    Article  CAS  Google Scholar 

  94. Chang, H. C., Tang, C. P., Popovitz-Biro, R., Lahav, M. and Leiserowitz, L. (1981) New J. Chem., 5 475

    CAS  Google Scholar 

  95. Chang, H. C., Popovitz-Biro, R., Lahav, M. and Leiserowitz, L. (1981) J. Am. Chem. Soc.,109 3883;

    Article  Google Scholar 

  96. Weisinger-Lewin, Y., Vaida, M., Popovitz-Biro, R., Chang, H. C., Mannig, F., Frolow, M., Lahav, M. and Leiserowitz, L. (1987) Tetrahedron, 43 1449;

    Article  CAS  Google Scholar 

  97. Sada, K., Kitamura, T. and Miyata, M. (1994) J. Chem. Soc., Chem. Commun., 905;

    Google Scholar 

  98. Padmanabhan, K., Ramamurthy, V. and Venkatesan, K. (1987) J Inclusion Phenom., 5 315.

    Article  CAS  Google Scholar 

  99. Harlow, R. L. and Desiraju, G. R. (1990) Acta Crystallogr., Sect. C. (Cr. Str. Comm.),46 1054;

    Article  Google Scholar 

  100. Luca, C., Popa, A., Bilba, N. and Mihaila, G. (1983) Rev. Roum. Chim., 28 211.

    CAS  Google Scholar 

  101. Arad-Yellin, R., Green, B. S., Knossow, M. and Tsoucaris, G. (1983) J. Am. Chem. Soc., 105 4561;

    Article  CAS  Google Scholar 

  102. Gerdil, R. and Frew, A. (1985) J. Inclusion Phenom., 3 335;

    Article  CAS  Google Scholar 

  103. Facey, G. A., Ratcliffe, C. I. Hynes, R. and Ripmeester, J. A. (1992) J. Phys. Org. Chem., 5 670;

    Article  CAS  Google Scholar 

  104. Pang, L. and Brisse, F. (1996) J. Chem. Cryst., 26 461.

    Article  CAS  Google Scholar 

  105. Qi Li, T. C. and Mak, W. (1995) J. Inclusion. Phenom., 20 73;

    Google Scholar 

  106. Harris, K. D. M. (1990) J. Solid State Chem., 280;

    Google Scholar 

  107. Tam, W., Eaton, D. F., Calabrese, J. C., Williams, I. D., Wang, Y. and Anderson, A. G. (1989) Chem. Mater., 1 128;

    Article  CAS  Google Scholar 

  108. Shindo, T., Shindo, M., Ohnuma, H. and Kabuto, C. (1993) Bul. Chem. Soc. Jpn., 66 1914;

    Article  CAS  Google Scholar 

  109. Anderson A. G., Calabrese, J. C., Tam, W. and Williams, I. D. (1987) Chem. Phys. Lett., 134 392.

    Article  CAS  Google Scholar 

  110. Uiterwijk, J. W. H. M., van Hummel, G. J., Harkema, S., Aarts, V. M. L. J., Daasvatn, K., Geevers, J., den Hertog Jr., H. J. and Reinhoudt, D. N. (1988) J. Inclusion Chem., 6 79;

    Article  CAS  Google Scholar 

  111. Goldberg, I., Lin, W. and Hart, H. (1984) J. Inclusion Chem., 2 377;

    Article  CAS  Google Scholar 

  112. Benetello, F., Bombieri, G. and Truter, M. R. (1987) J. Inclusion Chem., 5 165;

    Article  Google Scholar 

  113. Mak, T. C. W. and McMullin, R. K. (1988) J. Inclusion Chem., 6 473;

    Article  CAS  Google Scholar 

  114. Panunto, T. W. and Etter, M. C. (1988) J. Am. Chem. Soc., 110 5896;

    Article  Google Scholar 

  115. Etter, M. C., Urbanczyk-Lipkowska, Z., Zia-Ebrahimi, M. and Panunto, T. W. (1990) J. Am. Chem. Soc., 112 8415;

    Article  CAS  Google Scholar 

  116. Hollingsworth, M. D., Santarsiero, B. D. and Harris, K. D. M. (1994) Angew. Chem. Intl. Ed. Eng., 33 649;

    Article  Google Scholar 

  117. Yeo, L., Harris, K. D. M. and Guillaume, F. (1997) J. Solid State Chem., 128 273;

    Article  CAS  Google Scholar 

  118. Qi Li and Mak, T. C. W. (1996) Supramolecular Chemistry, 8 73;

    Article  Google Scholar 

  119. Brown, M. E., Chaney, J. D., Santasiero, B. D. and Hollingsworth, M. D. (1996) Chem. Mater.,8 1588.

    Article  CAS  Google Scholar 

  120. Girnus, I., Pohl, M.-M., Richter-Mendau, J., Schneider, M., Noack, M., Venzke, D. and Caro, J. (1995) Adv. Mater., 7 711–714;

    Article  CAS  Google Scholar 

  121. Cox, S. D., Gier, T. E., Stucky, G. D. and Bierlein, J. D. (1988) J. Am. Chem. Soc., 110 2986–2987.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Moulton, B., Zaworotko, M.J. (1999). Rational Design of Polar Solids. In: Braga, D., Grepioni, F., Orpen, A.G. (eds) Crystal Engineering: From Molecules and Crystals to Materials. NATO Science Series, vol 538. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4505-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4505-3_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5899-2

  • Online ISBN: 978-94-011-4505-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics