Skip to main content

Toward Crystal Design in Organic Conductors and Superconductors

  • Chapter
  • 534 Accesses

Part of the book series: NATO Science Series ((ASIC,volume 538))

Abstract

The vast majority of organic solids are electrical insulators with electrical conductivity values on the order of 10-20-10-15 Ω-1’cm -1. This property is of course exploited in many everyday applications. Two principal reasons are responsible for this fact: (1) The highest occupied molecular orbital (HOMO) of most organic molecules is completely filled, and there is a significant energy difference to the lowest unoccupied molecular orbital (LUMO). (2) Organic solids are usually molecular, i.e., they do not possess a system of covalent bonds extending over macroscopic distances. Therefore the quantum mechanical interactions between the HOMOs of adjacent molecules are small. The valence band formed by these interactions remains therefore very narrow. Similarly, the conduction band arising from the interactions between the LUMOs is also small, and the band gap is essentially that of the free molecule. This holds even in the case of conventional polymers, e.g. polyethylene, that are a-bonded.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCoy, H. N. and Moore, W. C. (1911) Organic amalgams: Substances with metallic properties composed in part of non-metallic elements, J. Am. Chem. Soc., 33, 273–292.

    Article  CAS  Google Scholar 

  2. Akamatu, H., Inokuchi, H., and Matsunaga, Y. (1954) Electrical conductivity of the perylene—bromine complex, Nature (London), 173, 168–169.

    Article  Google Scholar 

  3. Little, W. A. (1964) Possibility of synthesizing an organic superconductor, Phys. Rev., 134, A1416–1424.

    Article  Google Scholar 

  4. Acker, D. S., Harder, R. J., Hertler, W. R., Mahler, W., Melby, L. R., Benson, R. E., and Mochel, W. E. (1960) 7,7,8,8-Tetracyanoquinodimethane and its electrically conducting anion-radical derivatives, J. Am. litem. Soc., 82, 6408–6409.

    Article  CAS  Google Scholar 

  5. Ferraris, J., Cowan, D. O., Walatka, V., Jr., and Perlstein, J. H. (1973) Electron transfer in a new highly conducting donor-acceptor complex, J. Am. Chem. Soc., 95, 948–949.

    Article  CAS  Google Scholar 

  6. Coleman, L. B., Cohen, M. J., Sandman, D. J., Yamagishi, F. G., Garito, A. F., and Heeger, A. J. (1973) Superconducting fluctuations and the Peierls instability in an organic solid, Solid State Commun., 12, 1125–1132.

    Article  CAS  Google Scholar 

  7. Jérome, D., Mazaud, A., Ribault, M., and Bechgaard, K. (1980) Superconductivity in a synthetic organic conductor (TMTSF)2PF6, J. Phys., Leu. (Orsay, Fr.), 41, L95–98.

    Google Scholar 

  8. Mizuno, M., Garito, A. F., and Cava, M. P. (1978) `Organic metals’: Alkylthio substitution effects in tetrathiafulvalene-tetracyanoquinodimethane charge-transfer complexes, J. Chent. Soc., Chem. Commun., 18–19.

    Google Scholar 

  9. Kini, A. M., Geiser, U., Wang, H. H., Carlson, K. D., Williams, J. M., Kwok, W. K., Vandervoort, K. G., Thompson, J. E., Stupka, D. L., Jung, D., and Whangbo, M.-H. (1990) A new ambient pressure organic superconductor, x-(ET)2Cu[N(CN)2]Br, with the highest transition temperature yet observed (inductive onset T = 11.6 K, resistive onset = 12.5 K), Inorg. Client., 29, 2555–2557.

    Article  CAS  Google Scholar 

  10. Williams, J. M., Kini, A. M., Wang, H. H., Carlson, K. D., Geiser, U., Montgomery, L. K., Pyrka, G. J., Watkins, D. M., Kommers, J. M., Boryschuk, S. J., Strieby Crouch, A. V., Kwok, W. K., Schirber, J. E., Overmyer, D. L., Jung, D., and Whangbo, M.-H. (1990) From semiconductor—semiconductor transition (42 K) to the highest-T organic superconductor, x-(ET)2Cu[N(CN)2]CI (T, = 12.5 K), Inorg. Cheat., 29, 3272–3274.

    Article  CAS  Google Scholar 

  11. Williams, J. M., Ferraro, J. R., Thorn, R. J., Carlson, K. D., Geiser, U., Wang, H. H., Kini, A. M., and Whangbo, M.-H. (1992) Organic Superconductors (Including Fullerenes): Synthesis, Structure, Properties and Theory, Prentice Hall, New Jersey.

    Google Scholar 

  12. Ishiguro, T., Yamaji, K., and Saito, G. (1998) Organic Superconductors, Springer Series in Solid-State Sciences, 88, Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  13. Williams, J. M., Wang, H. H., Emge, T. J., Geiser, U., Beno, M. A., Leung, P. C. W., Carlson, K. D., Thorn, R. J., Schultz, A. J., and Whangbo, M.-H. (1987) Rational design of synthetic metal superconductors, in Lippard, S. J. (ed. Prog. Inorg. Cheni., 35, John Wiley & Sons, Inc., New York, p. 51–218.

    Chapter  Google Scholar 

  14. Yagubskii, É. B., Shchegolev, I. F., Laukhin, V. N., Kononovich, P. A., Kartsovnik, M. V., Zvarykina, A. V., and Buravov, L. I. (1984) Normal-pressure superconductivity in an organic metal (BEDT-TTF)2I3 [bis(ethylenedithiolo)tetrathiofulvalene triiodide], Pis’ma Zh. Eksp. Teor. Fiz., 39, 12–15 (Engl. Trans!.JETP Lett., 39, 12).

    CAS  Google Scholar 

  15. Williams, J. M., Wang, H. H., Beno, M. A., Emge, T. J., Sowa, L. M., Copps, P. T., Behroozi, F., Hall, L. N., Carlson, K. D., and Crabtree, G. W. (1984) Ambient-pressure superconductivity at 2.7 K and higher temperatures in derivatives of (BEDT-TTF)2IBr2: Synthesis, structure, and detection of superconductivity, Inorg. Chem., 23, 3839–3841.

    Article  CAS  Google Scholar 

  16. Wang, H. H., Beno, M. A., Geiser, U., Firestone, M. A., Webb, K. S., Nuñez, L., Crabtree, G. W., Carlson, K. D., Williams, J. M., Azevedo, L. J., Kwak, J. F., and Schirber, J. E. (1985) Ambient-pressure superconductivity at the highest temperature (5 K) observed in an organic system: f3(BEDT-TTF)2AuI2, Inorg. Chem., 24, 2465–2466.

    Article  CAS  Google Scholar 

  17. Merzhanov, V. A., Kostyuchenko, E. É., Laukhin, V. N., Lobkovskaya, R. M., Makova, M. K., Shibaeva, R. P., Shchegolev, I. F., and Yagubskii, É. B. (1985) An increase in the superconducting transition temperature of f3-(BEDT-TTF)213 to 6–7 K at a normal pressure, Pis’ma Zh. Eksp. Teor. Fiz., 41, 146–148 (Engl. Trans!. JETP Lett., 41, 179).

    CAS  Google Scholar 

  18. Murata, K., Tokumoto, M., Bando, H., Tanino, H., Anzai, H., Kinoshita, N., Kajimura, K., Saito, G., and Ishiguro, T. (1985) High T_ superconducting state in (BEDT-TTF)2 trihalides, Physica B+C (Amsterdam), 135, 515–519.

    Article  CAS  Google Scholar 

  19. Leung, P. C. W., Emge, T. J., Beno, M. A., Wang, H. H., Williams, J. M., Petricek, V., and Coppens, P. (1984) Novel structural modulation in the first ambient-pressure sulfur-based organic superconductor (BEDT-TTF)213, J. Am. Chem. Soc., 106, 7644–7646.

    Article  CAS  Google Scholar 

  20. Emge, T. J., Wang, H. H., Beno, M. A., Leung, P. C. W., Firestone, M. A., Jenkins, H. C., Carlson, K. D., Williams, J. M., Venturini, E. L., Azevedo, L. J., and Schirber, J. E. (1985) A test of superconductivity vs. molecular disorder in (BEDT-TTF)2X synthetic metals: Synthesis, structure (298, 120 K), and microwave/ESR conductivity of (BEDT-TTF)212Br, Inorg. Client., 24, 1736–1738.

    Article  CAS  Google Scholar 

  21. Bardeen, J., Cooper, L. N., and Schrieffer, J. R. (1957) Microscopic theory of superconductivity, Phys. Rev., 106, 162–164.

    Article  CAS  Google Scholar 

  22. Bardeen, J., Cooper, L. N., and Schrieffer, J. R. (1957) Theory of superconductivity, Phys. Rev., 108, 1175–1204.

    Article  CAS  Google Scholar 

  23. McMillan, W. L. (1968) Transition temperature of strong-coupled superconductors, Phys. Rev., 167, 331–344.

    Article  CAS  Google Scholar 

  24. Urayama, H., Yamochi, H., Saito, G., Nozawa, K., Sugano, T. Kinoshita, M., Sato, S., Oshima, K., Kawamoto, A., and Tanaka, J. (1988) A new ambient pressure organic superconductor based on BEDT-TTF with T higher thanl0 K (T c = 10.4 K), Chem. Lett., 55–58.

    Google Scholar 

  25. Welp, U., Fleshier, S., Kwok, W. K., Crabtree, G. W., Carlson, K. D., Wang, H. H., Geiser, U., Williams, J. M., and Hitsman, V. M. (1992) Weak ferromagnetism in x-(ET)2Cu[N(CN)2]Cl, where ET is bis(ethylenedithio)tetrathiafulvalene, Phys. Rev. Lett., 69, 840–843.

    Article  CAS  Google Scholar 

  26. Sushko, Y. V., Murata, K., Ito, H., Ishiguro, T., and Saito, G. (1995) x-(BEDT-TTF)2Cu[N(CN)2]Cl: Magnet and superconductor. High pressure and high magnetic field experiments, Synth. Met., 70, 907–910.

    Article  CAS  Google Scholar 

  27. Schlueter, J. A., Geiser, U., Kini, A. M., Wang, H. H., Williams, J. M., Naumann, D., Roy, T., Hoge, B., and Eujen, R. (1999) Trifluoromethylmetallate anions as components of molecular charge transfer salts and superconductors, Coord. Cheng. Rev., in press.

    Google Scholar 

  28. Schlueter, J. A., Carlson, K. D., Geiser, U., Wang, H. H., Williams, J. M., Kwok, W.-K., Fendrich, J. A., Welp, U., Keane, P. M., Dudek, J. D., Komosa, A. S., Naumann, D., Roy, T., Schirber, J. E., Bayless, W. R., and Dodrill, B. (1994) Superconductivity up to 11.1 K in three solvated salts composed of [Ag(CF3)4]- and the organic electron-donor molecule bis(ethylenedithio)tetrathiafulvalene, Physica (Amsterdam), C233, 379–386.

    Google Scholar 

  29. Kurmoo, M., Graham, A. W., Day, P., Coles, S. J., Hursthouse, M. B., Caulfield, J. L., Singleton, J., Pratt, F. L., Hayes, W., Ducasse., L., and Guionneau, P. (1995) Superconducting and semiconducting magnetic charge transfer salts: (BEDT-TTF)4AFe(C2O4)3.C6H5CN (A = H2O, K, NH4), J. Am. Chem. Soc., 117, 12209–12217.

    Article  CAS  Google Scholar 

  30. Geiser, U., Schlueter, J. A., Wang, H. H., Kini, A. M., Williams, J. M., Sche, P. P., Zakowicz, H. I., Vanzile, M. L., Dudek, J. D., Nixon, P. G., Winter, R. W., Gard, G. L., Ren, J., and Whangbo, M.-H. (1996) Superconductivity at 5.2 K in an electron donor radical salt of bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) with the novel polyfluorinated organic anion SF5CH2CF2SO3 -, J. Am. Chem. Soc., 118, 9996–9997.

    Article  CAS  Google Scholar 

  31. Mori, T. (1998) Structural genealogy of BEDT-TTF-based organic conductors I. Parallel molecules: (3 and 13“ phases, Bull. Chem. Soc. Jpn., 71, 2509–2526.

    Article  CAS  Google Scholar 

  32. Mori, T., Mori, H., and Tanaka, S. (1999) Structural genealogy of BEDT-TTF-based organic conductors II. Inclined molecules: 0, et, and K phases, Bull. Chem. Soc. Jpn., 72, 179–197.

    Article  CAS  Google Scholar 

  33. Bondi, A. (1964) Van der Waals volumes and radii, J. Phys. Chen., 68, 441–451.

    Article  CAS  Google Scholar 

  34. Oshima, K., Urayama, H., Yamochi, H., and Saito, G. (1988) Superconductivity and Deuteration Effect in (BEDT-TTF)2Cu(NCS)2, Synth. Met., 27, A473–A478.

    Article  CAS  Google Scholar 

  35. . Schlueter, J. A., Ward, B. H., Geiser, U., Wang, H. H., Kini, A. M., Parakka, J. P., Morales, E., Kelly, M. E., Koo, H.-J., Whangbo, M.-H., Nixon, P. G., Winter, R. G., and Gard, G. L. (1999) Crystal structure, physical properties and electronic structure of a new organic conductor: 13“ (BEDTTTF)2SF5CHFCF2SO3, submitted for publication in Chem. Mater.

    Google Scholar 

  36. . Ward, B. H., Schlueter, J. A., Geiser, U., Wang, H. H., Morales, E., Parakka, J. P., Thomas, S. Y., Williams, J. M., Nixon, P. G., Winter, R. W., Gard, G. L., Koo, H.-J., and Whangbo, M.-H. (1999) Comparison of the crystal and electronic structures of three 2:1 salts of the organic donor molecule BEDT-TTF with pentafluorothiomethylsulfonate anions SF5CH2SO3, SFSCHFSO3 and SF5CF2SO3 -, submitted for publication in Chem. Mater.

    Google Scholar 

  37. Wang, H. H., Geiser, U., O’Malley, J. L., Ward, B. H., Morales, E., Kini, A. M., Parakka, J. P., Koo, H.-J., and Whangbo, M.-H. (1999) Unpublished results.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Geiser, U. (1999). Toward Crystal Design in Organic Conductors and Superconductors. In: Braga, D., Grepioni, F., Orpen, A.G. (eds) Crystal Engineering: From Molecules and Crystals to Materials. NATO Science Series, vol 538. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4505-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4505-3_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5899-2

  • Online ISBN: 978-94-011-4505-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics