Skip to main content

Diversity and Certainty — Database Research in Crystal Engineering

  • Chapter
Book cover Crystal Engineering: From Molecules and Crystals to Materials

Part of the book series: NATO Science Series ((ASIC,volume 538))

  • 532 Accesses

Abstract

Crystal structures are determined by a complex interplay of intermolecular interactions. Given the lack of easily identifiable correspondences between molecular and crystal structures, and the difficulties in theoretical methods of structure prediction, statistical analysis of existing structural data continues to be one of the most useful entries into crystal synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

General references

  • Desiraju, G. R. (1989) Crystal Engineering: The Design of Organic Solids, Elsevier, Amsterdam.

    Google Scholar 

  • Desiraju, G. R. (1995) Supramolecular synthons in crystal engineering — A new organic synthesis. Angew. Chem. Int. Ed. Engl., 34 2311–2327.

    Article  CAS  Google Scholar 

  • Desiraju, G. R., (Ed.) (1996) The Crystal as a Supramolecular Entity, Perspectives in Supramolecular Chemistry, vol. 2, Wiley, Chichester.

    Google Scholar 

  • Gavezzotti, A. (1996) Organic crystals: engineering and design. Curr. Opin. Solid State Mater. Sci., 1 501–505.

    Article  CAS  Google Scholar 

  • Desiraju, G. R. (1997) Designer crystals: intermolecular interactions, network structures and supramolecular synthons. Chem. Commun. 1475–1482.

    Google Scholar 

  • Aakeröy, C. B. (1997) Crystal engineering: strategies and architectures. Acta Crystallogr. B53 569–583.

    Google Scholar 

  • Desiraju, G. R. (1997) Crystal engineering: solid state supramolecular synthesis. Curr. Opin. Solid State Mater. Sci. 2 451–454.

    Article  CAS  Google Scholar 

  • Weber, E. (Ed.) (1998) Design of Organic Solids, Topics in Current Chemistry, vol. 198, Springer Verlag, Heidelberg.

    Google Scholar 

  • Bürgi, H. -B., Hulliger, J., and Langley, P. J. (1998) Crystallisation of supramolecular materials Curr. Opin. Solid State Mater. Sci. 3 425–430.

    Article  Google Scholar 

  • Braga, D., Grepioni, F., and Desiraju, G. R. (1998) Crystal engineering and organometallic architecture. Chem. Rev. 98 1375–1405.

    Article  CAS  Google Scholar 

  • Nangia, A., and Desiraju, G. R. (1998) Supramolecular structures — reason and imagination. Acta Crystallogr., A54 934–944.

    CAS  Google Scholar 

Coordination polymers

  • Batten, S. R., and Robson, R. (1998) Interpenetrating nets: Ordered, periodic entanglement. Angew. Chem. Int. Ed. Engl. 37, 1460–1494.

    Article  Google Scholar 

  • Champness, N. R., and Schröder, M. (1998) Extended networks formed by coordination polymers in the solid state. Curr. Opin. Solid State Mater. Sci. 3, 419–424.

    Article  CAS  Google Scholar 

  • Yaghi, O. M., Li, H., Davis, C., Richardson, D., and Groy, T. L. (1998) Synthetic strategies, structure patterns and emerging properties in the chemistry of modular porous solids. Acc. Chem. Res. 31, 474–484.

    Article  CAS  Google Scholar 

  • Zaworotko, M. J. (1998) From dissymetric molecules to chiral polymers: A twist for supramolecular synthesis? Angew. Chem. Int. Ed. Engl. 37, 1211–1213.

    CAS  Google Scholar 

Historical

  • Bernal, J. D., and Crowfoot, D. (1935) The structure of some hydrocarbons related to the sterols. J. Chem. Soc., 93–100.

    Google Scholar 

  • Robertson, J. M. (1951) The measurement of bond lengths in conjugated molecules of carbon centres. Proc. R. Soc. London, A207 101–110.

    Google Scholar 

  • Mustafa, A. (1952) Dimerisation reactions in sunlight, Chem. Rev., 51 1–23.

    Article  CAS  Google Scholar 

  • Schmid, M. (1955) Neue organische Pigmentfarbstoffe, ihre Herstellung und Anwendung. Deutsche Farben-Zeitschrift, 9 252–255.

    CAS  Google Scholar 

Topochemistry

  • Schmidt, G. M. J. (1971) Photodimerization in the solid state. Pure Appl. Chem., 27 647–678.

    Article  CAS  Google Scholar 

  • Ginsburg, D., (Ed.) (1976) G. M. J. Schmidt et al. Solid State Photochemistry, Verlag Chemie, Weinheim.

    Google Scholar 

  • Desiraju, G. R. (Ed.) (1987) Organic Solid State Chemistry, Elsevier, Amsterdam.

    Google Scholar 

  • Kt-antler, B., Müller, T., Maynollo, J., Gruber, K., Kratky, C., Ochsenbein, P., Schwarzenbach, D. and Bürgi, H.-B. (1996) A topochemically controlled, regiospecific fullerenebisfunctionalisation.Angew. Chem. Int. Ed. Eng!. 35 1204–1206.

    Article  Google Scholar 

  • Toda, F., Tanaka, K., Tamashima, T., and Kato, M. (1998) Stereoselective thermal conversion of s-trans-diallene into dimethylenecyclobutene via s-cis-diallene in the crystalline state. Angew. Chem. Int. Ed. Engl. 37 2724–2727.

    Article  CAS  Google Scholar 

Crystal packing theory

  • Kitaigorodskii, A. I. (1973) Molecular Crystals and Molecules, Academic Press, New York.

    Google Scholar 

  • Kitaigorodskii, A. I. (1984) Mixed Crystals, Springer Verlag, Berlin.

    Book  Google Scholar 

  • Pertsin, A J, and Kitaigorodskii, A. I. (1987) The Atom Atom Potential Method, Springer Verlag, Heidelberg.

    Book  Google Scholar 

  • Pauling L., and Delbrück M. (1940) Nature of the intermolecular forces operative in biological processes. Science, 92 77–79.

    Article  CAS  Google Scholar 

  • Nowacki, W. (1942) Symmetrie und physikalisch-chemische Eigenschaften krystallisierter Verbindungen. I. Die Verteilung der Krystallstruckturen über die 219 Raumgruppen. Helv. Chim. Acta, 25 863–878.

    Article  CAS  Google Scholar 

  • Bondi, A. (1964) van der Waals volumes and radii. J. Phys. Chem., 68 441–451.

    Article  CAS  Google Scholar 

  • Desiraju, G. R. and Gavezzotti, A. (1989) Crystal structures of polynuclear aromatic hydrocarbons. classification, rationalisation and prediction from molecular structure Acta Crystallogr., B45 473–482.

    CAS  Google Scholar 

  • Brock, C. P., and Dunitz, J. D. (1994) Towards a grammar of crystal packing. Chem. Mater. 6, 1118–1127.

    Article  CAS  Google Scholar 

  • Gavezzotti A. (1994) Are crystal structures predictable? cc. Chem. Res., 27, 309–314.

    Article  CAS  Google Scholar 

  • Perlstein, J., Steppe, K., Vaday, S., and Ndip, E. M. N. (1996) Molecular self assemblies. 5. Analysis of the vector properties of hydrogen bonding in crystal engineering. J. Am. Chem. Soc., 118 8433–8443.

    Article  CAS  Google Scholar 

  • Lloyd, M. A. and Brock, C. P. (1997) Retention of 4 symmetry in compounds containing MAr4 molecules and ions. Acta Crystallogr., B53 780–786.

    CAS  Google Scholar 

Cambridge Structural Database

  • Allen, F. H., Kennard, O. and Taylor, R. (1983) Systematic analysis of structural data as a research technique in orgain chemistry. Acc Chem. Res. 16, 146.

    Article  CAS  Google Scholar 

  • Allen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Kennard, O., Macrae, C. F., Mitchell, G. F., Smith, J. M., and Watson, D. G. (1991) The development of versions 3 and 4 of the Cambridge Structural Database system. J. Chem. Inf. Comput. Sci., 31, 187–204.

    Article  CAS  Google Scholar 

  • Allen, F. H., and Kennard, O. (1993) Version 5 of the Cambridge Structural Database system. Chem. Design. Autom. News, 8, 1 & 31–37.

    Google Scholar 

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G., and Taylor, R. (1987). Tables and bond lengths determined by X-ray and neutron diffraction. Part I. Bond lengths in organic compounds. J. Chem. Soc., Perkin Trans. 2. S l-S 19.

    Google Scholar 

  • Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G., and Taylor, R. (1989). Tables of bond lengths determined by X-ray and neutron diffraction. Part II. Organometallic compounds and coordination complexes of the d-and f-block metals. J Chem. Soc. Dalton Trans., S1–S83.

    Google Scholar 

  • Rowland, R. S. and Taylor, R. (1996) Intermolecular nonbonded contact distances in organic crystal structures: comparision with distances expected from van der Waals radii. J Phys. Chem., 100, 7384–7391.

    Article  CAS  Google Scholar 

Intermolecular interactions studied with the CSD

  • Rosenfield, R. E., Jr. Parthasarathy, R., and Dunitz, J. D. (1977) Directional preferences of non-bonded atomic contacts with divalent sulfur. 1. Electrophiles and nucleophiles. J. Am. Chem. Soc., 99, 4860–4862.

    Article  CAS  Google Scholar 

  • Row, T. N. G., and Parthasarathy, R. (1981) Directional preferences of nonbonded atomic contacts with divalent sulfur in terms of its orbital orientations. 2. S-.S interactions and nonspherical shape of sulfur in crystals. J Am. Chem. Soc., 103, 477–479.

    Article  CAS  Google Scholar 

  • Taylor, R., and Kennard, O. (1982) Crystallographic evidence for the existence of CR O, C—H.••N and C—H•••Cl hydrogen bonds.] Am. Chem. Soc., 104, 5063–5070.

    Article  CAS  Google Scholar 

  • Murray-Rust, P., and Glusker, J. P. (1984) Directional hydrogen bonding to sp2- and spa-hybridized oxygen atoms and its relevance to ligand-macromolecule interactions. J. Am. Chem. Soc., 106, 1018–1025.

    Article  CAS  Google Scholar 

  • Desiraju, G. R. (1989) Distance dependence of C—H…0 interactions in some chloroalkyl compounds. J. Chem. Soc., Chem. Commun., 179–180

    Google Scholar 

  • Desiraju, G. R., and Parthasarathy, R. (1989) The nature of halogen—halogen interactions: are short halogen contacts due to specific attractive forces or due to close packing of non-spherical atoms? J. Am. Chem. Soc., 111, 8725–8726.

    Article  CAS  Google Scholar 

  • Desiraju, G. R. (1991) The C—H…0 hydrogen bond in crystals. What is it? Acc. Chem. Res., 24 290–296.

    Article  CAS  Google Scholar 

  • Pathaneni, S. S., and Desiraju, G. R. (1993) Database analysis of Au•..Au interactions. J. Chem. Soc., Dalton Trans., 319–322.

    Google Scholar 

  • Price, S. L., Stone, A. J., Lucas, J., Rowland, R. S., and Thornley, A. E. (1994) The nature of —C1•••Cl— intermolecular interactions. J. Am. Chem. Soc., 116 4910–4918.

    Article  CAS  Google Scholar 

  • Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D., and Desiraju, G. R. (1994) The nature of halogen.-halogen interactions and the crystal structure of 1,3,5,7-tetraiodoadamantane. J. Chem. Soc., Perkin Trans. 2, 2353–2360.

    Google Scholar 

  • Shimoni, L., and Glusker, J. P. (1994) The geometry of intermolecular interactions in some crystalline fluorine-containing organic compounds Struct Chem.,5 3843–397.

    Article  Google Scholar 

  • Braga, D., Grepioni, F., Biradha, K., Pedireddi, V. R., and Desiraju, G. R. (1995) Hydrogen bonding in organometallic crystals — 2. C—H•••0 hydrogen bonds in bridged and terminal first row metal carbonyls. J. Am. Chem. Soc., 117 3156–3166.

    Article  CAS  Google Scholar 

  • Braga, D., Grepioni, F., Biradha, K., and Desiraju, G. R. (1996) Agostic interactions in organometallic compounds A Cambridge Structural Database study. J. Chem. Soc., Dalton Trans., 3925–3930.

    Google Scholar 

  • Dance, I., and Scudder, M. (1998) Supramolecular motifs: Sextuple aryl embraces in crystalline [M(2,2’-bipy)3] and related complexes. J. Chem. Soc., Dalton Trans., 1341–1350.

    Google Scholar 

  • Allen, F. H., Lommerse, J. P. M., Hoy, V. J., Howard, J. A. K., and Desiraju, G. R. (1996) The hydrogen bond C—H donor and n-acceptor characteristics of three-membered rings. Acta Crystallogr., B52 734–745.

    CAS  Google Scholar 

  • Lommerse, J. P. M., Stone, A. J., Taylor, R., and Allen, F. H. (1996) The nature and geometry of intermolecular interactions between halogens and oxygen or nitrogen. J. Am. Chem. Soc., 118 3108–3116.

    Article  CAS  Google Scholar 

  • Desiraju, G. R. (1996) The C—H-0 hydrogen bond: structural implications and supramolecular design. Acc. Chem. Res. 29 441–449 (1996).

    Article  CAS  Google Scholar 

  • Steiner, T. (1997) Unrolling the hydrogen bond properties of C—H• •.O interactions. Chem. Commun. 727–734.

    Google Scholar 

  • Dunitz, J. D., and Taylor, R. (1997) Organic fluorine hardly ever accepts hydrogen bonds. Chem. Eur. J., 3 89–98.

    Article  CAS  Google Scholar 

  • Mascal, M. (1998) Statistical analysis of C-H•••N hydrogen bonds in the solid state: There are real precedents. Chem. Commun., 303–304.

    Google Scholar 

  • Steiner, T., and Desiraju, G. R. (1998) Distinction between the weak hydrogen bond and the van der Waals interaction, Chem. Commun., 891–892.

    Google Scholar 

  • Allen, F. H., Raithby, P. R., Shields, G. P. and Taylor, R. (1998) Probabilities of formation of bimolecular cyclic hydrogen-bonded motifs in organic crystal structures: A systematic database study. Chem. Commun., 1043–1044.

    Google Scholar 

  • Aullón, G., Bellamy, D., Brummer, L., Vruton, E. A., and Orpen, G. A. (1998) Metal-bound chlorine often accepts hydrogen bonds. Chem. Comun., 654–654.

    Google Scholar 

  • Braga, D., Leonardis, P. D., Grepioni, F., and Tedesco, E. (1998) Crystalline dihydrogen complexes. Intramolecular and intermolecular interactions and dynamic behaviour. Inorg. Chim. Acta, 273 116–130.

    Article  CAS  Google Scholar 

  • Desiraju, G. R., and Steiner, T. (1999) The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, Oxford.

    Google Scholar 

Hierarchies of interactions

  • Leiserowitz, L. (1976) Molecular packing modes. Carboxylic acids. Acta Crystallogr., B32 775–802.

    CAS  Google Scholar 

  • Sarma, J. A. R. P., and Desiraju, G. R. (1986) The role of Cl•••Cl and C—H…0 interactions in the crystal engineering of 4A - short axis structures. Acc. Chem. Res., 19 222–228.

    Article  CAS  Google Scholar 

  • Etter, M. C. (1990) Uncoding and decoding hydrogen bond patterns of organic compounds. Acc. Chem. Res. 23 120–126.

    Article  CAS  Google Scholar 

  • Sharma, C. V. K., Panneerselvam, K., Pilati, T. and Desiraju, G. R. (1993) Molecular recognition involving an interplay of O—H•.•O, C—H…0 and 7C-TE interactions. The anomalous crystal structure of the 1:1 complex 3,5-dinitrobenzoic acid - 4-(N,Ndimethylamino)benzoic acid. J. Chem. Soc., Perkin Trans. 2, 2209–2216.

    Article  Google Scholar 

  • Aoyama, Y., Endo, K., Anzai, T., Yamaguchi, Y., Sawaki, T., Kobayashi, K., Kanehisa, N., Hashimoto, H., Kai, Y., and Masuda, H. (1996) Crystal engineering of stacked aromatic columns. Three-dimensional control of the alignment of orthogonal aromatic triads and guest quinones via self-assembly of hydrogen-bonded networks. J. Am. Chem. Soc., 118 5562–5571.

    Article  CAS  Google Scholar 

  • Allen F. H., Hoy, V. J., Howard, J. A. K., Thalladi, V. R.,Desiraju, G. R., Wilson, C. C., and McIntyre, G. J. (1997) Crystal engineering and correspondence between molecular and crystal structures. Are 2- and 3-aminophenols anomalous? J. Am. Chem. Soc., 119 3477–3480.

    Article  CAS  Google Scholar 

  • Desiraju, G. R. (1997) Crystal gazing: Structure prediction and polymorphism. Science, 278 404–405.

    Article  CAS  Google Scholar 

Deconvoluting interactions

  • Schwiebert, K. E., Chin, D. N., MacDonald, J. C., and Whitesides, G. M. (1995) Engineering the solid state with 2-benzimida7olones. J. Am. Chem. Soc., 118, 4018–4029.

    Article  Google Scholar 

  • Reddy, D. S., Ovchinnikov, Y. E., Shishkin, O. V., Struchkov, Y. T., and Desiraju, G. R. (1996) Supramolecular synthons in crystal engineering. 3. Solid state architecture and synthon robustness in some 2,3-dicyano-5,6-dichloro-1,4-dialkoxybenzenes. J. Am. Chem. Soc., 118, 4085–4089.

    Article  CAS  Google Scholar 

  • Lewis, F. D., Yang, J., and Stern, S. L. (1996) Crystal structures of secondary arene dicarboxamides. An investigation of arene hydrogen bonding relationships in the solid state. J. Am. Chem. Soc., 118 12029–12037.

    Article  CAS  Google Scholar 

  • Coe, S., Kane, J. J., Nguyen, T. L., Toledo, L. M., Wininger, E., Fowler, F. W., and Lauher, J. W. (1996) Molecular symmetry and the design of molecular solids. The oxamide functionality as a persistent hydrogen bonding unit. J. Am. Chem. Soc., 119 86–93.

    Article  Google Scholar 

  • Thalladi, V. R., Weiss, H.-C., Bläser, D., Boese, R., Nangia, A. and Desiraju, G. R. (1998) C—H•••F interactions in the crystal structures of some flurobenzenes. J. Am. Chem. Soc.,120, 8702–8710.

    CAS  Google Scholar 

  • Robinson, J. M. A., Kariuki, B. M., Harris, K. D. M. and Philp, D. (1998) Interchangeability of halogen and ethynyl substitutents in the solid state structures of di-and tri-substituted benzenes. J. Chem. Soc. Perkin Trans 2., 2459–2469.

    Google Scholar 

  • Kuduva, S. S., Craig, D. C., Nangia, A., and Desiraju, G. R. (1999) Cubanecarboxylic acids. Crystal engineering considerations and the role of C—H…0 hydrogen bonds in determining O—H•••O networks. J. Am. Chem. Soc., 121, (in press).

    Google Scholar 

Crystal synthesis. Convolution

  • Leiserowitz, L., and Hagler, A. (1983) Generation of primary amide crystal structures. Proc. R. Soc. London, A388 133–175.

    Google Scholar 

  • Reddy, D. S., Craig, D. C., Rae, A. D. and Desiraju, G. R. (1993) N•••Br mediated diamondoid network in the crystalline complex, carbon tetrabromide —hexamethylenetetramine J. Chem. Soc., Chem. Commun., 1737–1738.

    Google Scholar 

  • Reddy, D. S., Craig, D. C., and Desiraju, G. R. (1994) Organic alloys: Diamondoid networks in crystalline complexes of 1,3,5,7-tetrabromoadamantane, hexamethylene tetramine and carbon tetrabromide. J. Chem. Soc., Chem. Commun., 1457–1458.

    Google Scholar 

  • Reddy, D. S., Craig, D. C., and Desiraju, G. R. (1996) Supramolecular synthons in crystal engineering. 4. Structure simplification and synthon interchangeability in some organic diamondoid solids. J. Am. Chem. Soc., 118 4090–4093.

    Article  CAS  Google Scholar 

  • Thalladi, V. R., Brasselet, S., Bläser, D., Boese, R., Zyss, J., Nangia, A., and Desiraju, G. R. (1997) Engieering of an octupolar non-linear optical crystal: Tribenzyl isocyanurate. Chem. Commun., 1841–1842.

    Google Scholar 

  • Swift, J. A., Pivovar, A. M., Reynolds, A. M. and Ward, M. D. (1998) Template-directed architectural isomerism of open molecular frameworks: Engineering of crystalline clathrates. J. Am. Chem. Soc., 120 5887–5894.

    Article  CAS  Google Scholar 

  • Thalladi, V. R., Brasselet, S., Weiss, H.-C., Bläser, D. Katz, A. K., Carrell, H. L., Boese, R., Zyss, J., Nangia, A., and Desiraju, G. R. (1998) Crystal engineering of some 2,4,6-triaryloxy 1,3,5-triazines: octupolar non-linear materials. J. Am. Chem. Soc., 120 2563–2577.

    Article  CAS  Google Scholar 

  • Langley, P. J., Hulliger, J., Thaimattam, R., and Desiraju, G. R. (1998) Supramolecular synthons mediated by weak hydrogen bonding: Forming linear molecular arrays via C=C—H•••O2N recognition. New J. Chem., 1307–1309.

    Google Scholar 

  • Galoppini, E., and Gilardi, R. (1.999) Weak hydrogen bonding between acelylenic groups: the formation of tetrakis(4-ethynylphenyl)methane. Chem. Commun., 173–174.

    Google Scholar 

  • Jetti, R. K. R., Kuduva, S. S., Reddy, D. S., Xue, F., Mak, T. C. W., Nangia, A., and Desiraju, G. R. (1998) 4-(Triphenylmethyl)benzoic acid: a supramolecular wheel-andaxle host compund. Tetrahedron Lett., 39 913–916.

    Article  CAS  Google Scholar 

  • MacGillivray, L. R., and Atwood, A. L. (1999) Unique guest inclusion within multi-component, extended-cavity resorcin [4] arenes. Chem. Commun., 181–182.

    Google Scholar 

Other recent articles

  • Coates, G. W., Dunn, A. R., Henling, L. M., Ziller, J. W., Lobkovsky, E. B., and Grubbs, R. H. (1998) Phenyl-perfluorophenyl stacking interactions: Topochemical [2+2] photodimerization of olefinic compounds. J. Am. Chem. Soc., 120 3641–3649.

    Article  CAS  Google Scholar 

  • Ferguson, G., Glidewell, C., Lough, A. J., McManus, G. D., and Meehan, P. R. (1998) Crystal engineering using polyphenols. Host-guest behaviour of planar ribbons in C- methylcalix[4]resorcinarene-4,4’-trimethylene-dipyridine-methanol (1/2/0.5), and capture of 2,2’-bipyridyl molecules by paired calixarene bowls in C-methylcalix[4]resorcinarene-2,2’-bipyridyl-methanol-water (1/1/1/1.16). J. Mater. Chem. 8 2339–2345.

    Article  CAS  Google Scholar 

  • Spaniel, T., Gorls, H., and Scholz, J. (1998) (1,4-Diaza-1,3-diene)titanium and - niobium halides: Unusual structures with intramolecular C-H•••halogen hydrogen bonds. Angew. Chem. Int. Ed. Engl., 37 1862–65.

    Article  CAS  Google Scholar 

  • Hulliger, J., and Langley, P. J. (1998) On intrinsic and extrinsic defect-forming mechanisms determining the disordered structure of 4-iodo-4’-nitrobiphenyl crystals. Chem. Commun., 2557–2558.

    Google Scholar 

  • Ranganathan, D., Handas, V., Gilardi, R., and Karle, I. L. (1998) Self-assembling aromatic-bridged serine-based cyclodepsipeptides (Serinophanes): A demonstration of tubular structures formed through aromatic 7t-IC interactions. J. Am. Chem. Soc.,120 10793–10800.

    Article  CAS  Google Scholar 

  • Jones, P.G., and Ahrens, B. (1998) Bis(diphenylphosphino)methane and related ligands as hydrogen bond donors. Chem. Commun., 2307–2308.

    Google Scholar 

  • Krische, M. J., Lehn, J-M., Kyritsakas, N., and Fischer, J. (1998) Molecularrecognition-directed self-assembly of pleated sheets from 2-aminopyrimidine hydrogen-bonding motifs. He/v. Chim. Acta, 81 1909–1920.

    Article  CAS  Google Scholar 

  • Krische, M. J., Lehn, J-M., Kyritsakas, N., Fischer, J., Wegelius, E. K., Nissinen, M. J., and Rissanen, K. (1998) Exploring the 2,2’-diamino-5,5’-bipyrimidine hydrogen-bonding motif: A modular approach to alkoxy-functionalized hydrogen-bonded networks. Heiv. Chim. Acta, 81 1921–1930.

    Article  CAS  Google Scholar 

  • Crabtree, R. H. (1998) A new type of hydrogen bond. Science, 282 2000–2001.

    Article  CAS  Google Scholar 

  • Aakeröy, C. B., Nieuwenhuyzen, M., and Price, S. L. (1998), Three polymorphs of 2amino-5-nitropyrimidine: Experimental structures and theoretical predictions. J. Am. Chem. Soc., 120 8986–8993.

    Article  Google Scholar 

  • Pedireddi, V. R., Ranganathan, A., and Chatterjee, S. (1998) Layered structures formed by dinitrobenzoic acids. Tetrahedron Letters, 39 9831–9834.

    Article  CAS  Google Scholar 

  • Holy, P., Zavada, J., Cisarova, I., and Podlaha, J. (1999) Self-assembly of 1,1’biphenyl-2,2’,6,6’-tetracarboxylic acid: Formation of an achiral grid with chiral compartments. Angew. Chem. Int. Ed. Engl., 38 381–383.

    Article  CAS  Google Scholar 

  • Braga, D., and Grepioni, F. (1999) Complementary hydrogen bonds and ionic interactions give access to the engineering of organometallic crystals. J. Chem. Soc., Dalton Trans, 1–8.

    Google Scholar 

  • Beketov, K., Weber, E., Siedel, J., Kohnke, K., Makhkamov, K., and Ibragimov, B. (1999) Temperature-controlled selectivity of isomeric guest inclusion: enclathration and release of xylenes by 1,1’-binaphthyl-2–2’-dicarboxylic acid. Chem. Commun., 91–92.

    Google Scholar 

  • Nangia, A., and Desiraju, G. R. (1999) Pseudopolymorphism. Occurrences of hydrogen bonding organic solvents in molecular crystals. Chem. Commun., (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Desiraju, G.R. (1999). Diversity and Certainty — Database Research in Crystal Engineering. In: Braga, D., Grepioni, F., Orpen, A.G. (eds) Crystal Engineering: From Molecules and Crystals to Materials. NATO Science Series, vol 538. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4505-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4505-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5899-2

  • Online ISBN: 978-94-011-4505-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics