Skip to main content

Thermodynamics and Kinetics of Crystalline Inclusion Compounds

  • Chapter

Part of the book series: NATO Science Series ((ASIC,volume 538))

Abstract

This brief review will focus on the Physical Chemistry of crystalline inclusion compounds and will discuss their thermodynamic properties, the dynamics of enclathration and desolvation and attempt to relate them to their crystal structure. We will list a number of reviews and papers which outline the major concepts and some important techniques in the field of Inclusion Chemistry, with a view to introducing new researchers to this area and to facilitate their introduction to the extensive literature in this field. The bibliography does not pretend to be exhaustive, but concentrates on publications which give details of useful experimental techniques and illustrative examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Powell, H.M. (1984) Introduction, in J.L. Atwood, J.E.D. Davies, D.D. MacNicol (eds.) Inclusion Compounds, 1 Academic Press, London, pp 1–28.

    Google Scholar 

  2. Davies, J.E.D., Kemula, K., Powell, H.M. and Smith, N.O. (1983) Inclusion Compounds - Past, present and future, J. Incl. Phenom., 1 3–44.

    Article  CAS  Google Scholar 

  3. Comprehensive Supramolecular Chemistry (1996) Executive Editors: J.L. Atwood, J.E. Davies, D.D. MacNicol and F. Vögtle, Vols 1–11. Pergamon, Elsevier Science Ltd, Oxford.

    Google Scholar 

  4. Davy, H. (1811) On some of the Combinations of Oxymuriatic gas and oxygene, and on the chemical relations of these principles, to inflammable bodies, Philos. Trans. R. Soc. London., 101 1–35.

    Google Scholar 

  5. . Faraday, M. (1823) On hydrate of chlorine, Quart. J. Sei., 15 71--74.

    Google Scholar 

  6. Damour, A. (1840) Ann. Mines., 17 191.

    Google Scholar 

  7. Schafhäutl, C. (1841) Ueber die verbindungen des kohlenstoffes mit silicium, eisen und anderen metallen, welche die verschiedenen gattungen ron roheisen, stahl und schmiedeeisen bilden, J. Prakt. Chem., 21 129–157.

    Article  Google Scholar 

  8. Wöhler, F. (1849) Ueber einige verbindungen aus der chinonreihe, Ann. Chem. Liebigs., 69 294–300.

    Article  Google Scholar 

  9. Villiers, A. (1891) Sur la fermentation de la fécule par l’action du ferment butyrique, C R. Hebd. SeancesAcad Sci., 112 536–538.

    Google Scholar 

  10. Pickering, S.U. (1893) The hydrate theory of solutions. Some compounds of the alkylamines and ammonia with water, J. Chem. Soc. Trans., 63 141–195.

    Article  CAS  Google Scholar 

  11. Fischer, E. (1894) Einfluss der configuration auf die wirkung der Enzyme, Ber. Deutsch. Chem. Ges.,27, 2985–2993.

    Article  CAS  Google Scholar 

  12. Lima de Fana, J. (ed.) (1990) Historical Atlas of Crystallography, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  13. Hofmann, K.A. and Küspert, F. (1897) Verbindungen von kohlenwasserstoffen mit metallsalzen, Z. Anorg. Allg. Chem., 15 204–207.

    Article  CAS  Google Scholar 

  14. Hofmann, K.A. and Höchtlen, F. (1903) Abnorme verbindungen des nickels, Chem. Ber., 36 1149–1151.

    Article  CAS  Google Scholar 

  15. Hartley, H. and Thomas, N.G. (1906) The solubility of triphenylmethane in organic liquids with which it forms crystalline compounds, J. Chem. Soc., 1013–1033.

    Google Scholar 

  16. Spallino, R. and Provenzal, G. (1909) Sulla preparazione dell’acido ortotimotico e di alcuni suoi derivati, Gazz. Chim. Ital., 39, 325–336.

    Google Scholar 

  17. Dianin, A.P. (1914) On the condensation of phenols with unsaturated ketones. Condensation of phenols with mesitylene oxide. J. Soc. Phys. Chem. Russe, 46 1310–1319.

    CAS  Google Scholar 

  18. Wieland, H. and Sorge,-H. (1916) Untersuchungen über die gallensäuren. H. Mitteilung. Zur kenntnis der choleinsäure, Z Physiol. Chem. Hoppe-Seyler’s, 97, 1–27.

    Article  CAS  Google Scholar 

  19. Hanunerschmidt, E.G. (1934) Formation of gas hydrates in natural gas transmission lines, Ind Eng. Chem., 26 851–855.

    Article  Google Scholar 

  20. McBain, J.W. (1932) Sorption by chabasite, other zeolites and permeable crystals, Absorption of Gases and Vapours by Solids, Routledge and Sons, Chapter 5, 167–176.

    Google Scholar 

  21. Terres, E. and Vollmer, W. (1935) Z. Petroleum, 31 1.

    CAS  Google Scholar 

  22. Kratky, O. and Giacomello, G. (1936) Der kristallbau der paraffin carboncholeinsäuren, Monatsh. Chem., 69, 427–436.

    Article  CAS  Google Scholar 

  23. Bengen, M.F. German Patent Application 02123438, March 18, 1940.

    Google Scholar 

  24. Mikus, F.F., Hixon, RM. and Rundle, RE. (1946) The complexes of fatty acids with amylose, J. Amer. Chem. Soc., 68, 1115–1123.

    Article  CAS  Google Scholar 

  25. Palin, D.E. and Powell, H.M. (1947) The structure of molecular compounds. Part III. Crystal structure of addition complexes of quinol with certain volatile compounds, J. Chem. Soc., 208–221.

    Google Scholar 

  26. Powell, H.M. (1948) The structure of molecular compounds. Part IV. Clathrate compounds, J. Chem. Soc., 61–73.

    Google Scholar 

  27. Cram, D.J. and Steinberg, H. (1951) Macro Rings. I. Preparation and spectra of the paracyclophanes, J. Am. Chem. Soc., 73 5691–5704.

    Article  CAS  Google Scholar 

  28. Von Stackelberg, M and Müller, H.R. (1951) On the structure of gas hydrates J. Chem. Phys., 19 1319–1320.

    Article  CAS  Google Scholar 

  29. Claussen, W.F. (1950) Suggested structures of water in inert gas hydrates, J. Chem. Phys., 19 259–260.

    Article  Google Scholar 

  30. Pauling, L. and Marsh, R.E. (1952) The structure of chlorine hydrate, Proc. Natl. Acad Sci. USA, 38 112–118.

    Article  CAS  Google Scholar 

  31. Schaeffer, W.D., Dorsey, W.S., Skinner, DA, and Christian, C.G. (1957) Separation of Xylenes, Cymenes, Methylnaphthalenes and other isomers by clathration with inorganic complexes, J. Am. Chem. Soc., 79, 5870–5876.

    Article  CAS  Google Scholar 

  32. L. Mandelcorn (ed.) (1964) Non Stoichiometric Compounds. Academic Press, New York.

    Google Scholar 

  33. Pedersen, C.J. (1967) Cyclic polyethers and their complexes with metal salts..1. Am. Chem. Soc., 89 7017–7036.

    Article  CAS  Google Scholar 

  34. Atwood, J.L., Milton, P.A. and Seale, S.K. (1971) Thermal behavior of anionic organoalurninum thiocyanates, J. Organomet. Chem., 28 C29–C30.

    Article  CAS  Google Scholar 

  35. Dietrich, B., Lehn, J.-M. and Sauvage, J.-P. (1969) Diaza-polyoxa-macrocycles et macrobicycles, Tetrahedron Lett., 2885–2888.

    Google Scholar 

  36. Argauer, RJ. and Landolt, G.R. (1972) US Patent, 3, 702, 886.

    Google Scholar 

  37. Cram, D. J. And Cram, J. M. (1974) Host-guest chemistry. Science,183 803–809.

    Article  CAS  Google Scholar 

  38. MacNicol, D.D. and Wilson, D.R. (1976) New strategy for the design of inclusion compounds: Discovery of the `Hexa-hosts’, J. Chem. Soc. Chem. Comm., 494–495.

    Google Scholar 

  39. Leim, J.-M. (1978) Cryptates: Inclusion complexes of macropolycyclic receptor molecules, Pure Appl. Chem., 50, 871–892.

    Article  Google Scholar 

  40. Andreetti, G.D., Ungaro, R and Pochini, A. (1979) Crystal and molecular structure of Cyclo{quarter[(5-t-butyl-2-hydroxy-1,3-phenylene)methylene]} Toluene (1:1) Clathrate, J. Chem. Soc. Chem. Comm., 1005–1007.

    Google Scholar 

  41. Lipkowski, J. (1980) Structure and physico-chemical behavior of clathrates formed by the Ni(NCS)2(4- Methylpyridine)4 complex, Accademia Polacca deele Scienze, Biblioteca e centro di studi a Roma. Conferenze, 81 1–27.

    Google Scholar 

  42. Weber, E. and Josel, H.-P. (1983) A proposal for the classification and nomenclature of host-guest-type compounds, J. Incl. Phenom.,1 79–85.

    Article  CAS  Google Scholar 

  43. Allwood, B.L., Spencer, N., Shairiari-Zavarech, H., Stoddart, J.F. and Williams, D.J. (1987) Complexation of Paraquat by a bisparaphenylene-34-crown-10 derivative, J. Chem. Soc. Chem. Commun., 1064–1066.

    Google Scholar 

  44. Cram, D.J. (1988) The design of molecular hosts, guests and their complexes, Angew. Chem. Int. Ed Engl., 27, 1009–1020.

    Article  Google Scholar 

  45. Leim, J.-M. (1988)Supramolecular chemistry-scope and perspectives molecules, supermolecules and molecular devices (Nobel lecture), Angew. Chem. Int. Ed Engl., 27, 90–112.

    Google Scholar 

  46. Pedersen, C.J. (1988)The discovery of crown ethers (Nobel lecture) Angew. Chem. Int. Ed Eng1.,27, 1021–1027.

    Article  Google Scholar 

  47. Supramolecular Chemistry (1992) J.L. Atwood and G.W. Gokel (eds.) Gordon and Breach, New York.

    Google Scholar 

  48. Herbstein, F.H. (1993) Structural principle in the classification of crystalline binary adducts (molecular compounds and complexes), Acta Chim. Hung, 130 377–386.

    CAS  Google Scholar 

  49. Supramolecular Science (1992) Elsevier Science Ltd., Oxford.

    Google Scholar 

  50. Crystal Engineering (1998) RD. Rodgers and M. Zaworotko (eds.)Pergamon, Elsevier Science, Oxford.

    Google Scholar 

  51. Jeffrey, G.A. (1997) An introduction to Hydrogen Bonding, Oxford University Press, Oxford.

    Google Scholar 

  52. Weber, E., Skobridis, K., Wierig, A., Nassimbeni, L.R and Johnson, L. (1992) Complexation with diol host compounds. Part 10. Synthesis and solid state inclusion compounds of bis (diarylhydroxymethyl) -substituted benzenes and biphenyls: X-ray crystal structures of two host polymorphs and of a non-functional host analogue. J. Chem. Soc. Perkin Trans.2, 2123–2130.

    Google Scholar 

  53. Giron, D. (1995) Thermal analysis and calorimeric methods in the characterisation of polymorphs and solvates. Thermochim. Acta, 248 1–59.

    Article  CAS  Google Scholar 

  54. Caira, M.R. (1998) Crystalline polymorphism of organic compounds in E. Weber (èd.) Topics in Current Chemistry, Vol 198, Springer Verlag, Berlin, pp163–208.

    Google Scholar 

  55. Wendlandt, W.W. (1986) Thermal Analysis (3rd ed), Wiley, New York.

    Google Scholar 

  56. Brown, M.E. (1988) Introduction to Thermal Analysis, Chapman and Hall, London.

    Book  Google Scholar 

  57. Wunderlich, B. (1990) Thermal Analysis, Academic Press, San Diego.

    Google Scholar 

  58. Haines, P.J. (1995) Thermal Methods ofAnalysis. Principles, Applications and Problems, Chapman and Hall, London.

    Book  Google Scholar 

  59. Höhne, G., Hemminger, W. and Flammersheim, H.-J. (1996) Differential Scanning Calorimetry. An introduction for Practitioners, Springer-Verlag, Berlin.

    Google Scholar 

  60. Cammenga, H.K. and Eppel, M (1995) Basic principles of thermoanalytical techniques and their applications in preparative chemistry, Angew. Chem. Int. Ed. Engl., 34, 1171–1187.

    Article  CAS  Google Scholar 

  61. McAdie, H.G. (1962) Thermal decomposition of molecular complexes. I. Urea-nparaffin inclusion compounds, Can. J. Chem., 40, 2195–2203.

    Article  CAS  Google Scholar 

  62. McAdie, H.G. (1963) Thermal decomposition of molecular complexes. II. ß-quinol clathrates, Can. J. Chem., 41, 2137–2143.

    Article  CAS  Google Scholar 

  63. McAdie, H.G. (1996) Thermal decomposition of molecular complexes. IV. Further studies of ßßuinol clathrates, Can. J. Chem., 44, 1373–1385.

    Article  Google Scholar 

  64. Gavrilova, G.V., Kislykh, N.V. and Logvinenko, V.A. (1998) Study of the thermal decomposition processes of clathrate compounds, J. Therm. Anal., 33, 229–235.

    Google Scholar 

  65. Lipkowski, J. (1996) Clathration and solvation of molecules, in G. Tsoucaris, J.L. Atwood and J. Lipkowski (eds.), Crystallography of Supramolecular Compounds, Kluwer Academic Publishers, Dordrecht, pp. 265–283.

    Chapter  Google Scholar 

  66. Moore, M.H., Nassimbeni, L.R. and Niven, M.L. (1987) Studies in Werner Clathrates. Part 5. Thermal analysis of bis (isothiocyanato) tetra (4-vinylpyridine) nickel (II) Inclusion Compounds. Crystal structure of the Ni(NCS)2(4Vipy)4.2CHCl 3 clathrate, Inorg. Chim. Acta, 131, 45–52.

    Article  CAS  Google Scholar 

  67. Caira, M.R. and Nassimbeni, L.R. (1996) Phase transformation in inclusion compounds, kinetics and thermodynamics of enclathration in D.D. MacNicol, F. Toda and R Bishop (eds.), Comprehensive Supramolecular Chemistry, Vol 6. Solid State Supramolecular Chemistry: Crystal Engineering, Pergamon, Elsevier Science Ltd., Oxford, pp. 825–850.

    Google Scholar 

  68. Starzewski, P., Zielenkiewicz, W. and Lipkowski, J. (1984) A thermokinetic study of the clathration of isomeric xylenes by the Ni(NCS)2 (4-Menthylpyridine)4 Host, J. Incl. Phenom., 1, 223–232.

    Article  CAS  Google Scholar 

  69. Dewa, T., Endo, K. and Aoyama, Y. (1998) Dynamic aspects of lattice inclusion complexation involving a phase change. Equilibrium, kinetics and energetics of guest-binding to a hydrogen-bonded flexible organic network., J. Amer. Chem. Soc., 120, 8933–8940.

    Article  CAS  Google Scholar 

  70. Sawaki, T., Dewa, T. and Aoyama, Y. (1998) Immobilisation of soluble metal complexes with a hydrogen-bonded organic network as supporter. A simple route to microporous solid Lewis acid catalysts., J. Amer. Chem. Soc., 120, 8539–8540.

    Article  CAS  Google Scholar 

  71. Coetzee, A., Nassimbeni, L.R. and Achleitner, K. (1997)A quartz microbalance for measuring the kinetics of guest uptake from the vapour, Thermochim. Acta, 298, 81–85.

    Article  CAS  Google Scholar 

  72. Coetzee, A., Nassimbeni, L.R. and Su, H. (1999) Desolvation of trans-9,10Dihydroxy-9,10-diphenyl-9, 10-dihydroanthracene. Cyclohexanone: kinetic compensation effect. J. Chem. Res., in press.

    Google Scholar 

  73. Caira, M.R., Nassimbeni, L.R. and Schubert, W.-D. (1992) Complexation with diol host compounds. Part 9. Structures and thermal analysis of inclusion compounds of trans-9,10-dihydroxy-9,10-diphenyl-9,10-dihydroanthracene with acetonitrile and 3- hydroxyproprionitrile, Thermochim. Acta, 206, 265–271.

    Article  CAS  Google Scholar 

  74. Barbour, L.J., Achleitner, K. and Greene, J.R. (1992) A system of studying gassolid reaction kinetics in controlled atmospheres, Thermochim. Acta, 205, 171–177.

    Article  CAS  Google Scholar 

  75. Barbour, L.J., Caira, MR. and Nassimbeni, L.R. (1993) Kinetics of Inclusion, J. Chem. Soc. Perkin Trans . 2 2321–2322.

    Google Scholar 

  76. Votnisky, J., Kalousova, J. Benes, L., Bandysova, I. and Zima, V. (1993) Volumetric method for following the rate of intercalation of liquid molecular guests into layered hosts, J. Incl. Phenom. Mol. Recog. Chem., 15 71–78.

    Article  Google Scholar 

  77. Brown, M.E. and Galway, A.K. (1989) Arrhenius parameter for solid-state reactions from isothermal rate-time curves, Anal. Chem., 61 1136–1139.

    Article  CAS  Google Scholar 

  78. Galway, A.K. and Brown, ME. (1995) A theoretical justification for the application of the Arrhenius equation to kinetics of solid state reactions (mainly ionic crystals), Proc. R. Soc. Lond. A, 450 501–512.

    Article  Google Scholar 

  79. Brown, M.E. (1997) Steps in a minefield. Some kinetic aspects of thermal analysis. J. Therm. Anal., 49 17–32.

    Article  CAS  Google Scholar 

  80. Caira, M.R., Home, A., Nassimbeni, L.R. and Toda, F. (1997) Inclusion and separation of picoline isomers by a diol host compound, J. Mater. Chem., 7, 2145–2149.

    Article  CAS  Google Scholar 

  81. Caira, M.R., Home, A., Nassimbeni, L.R. and Toda, F. (1998) Selective inclusion of aliphatic alcohols by a diol host compound, J. Mater. Chem., 8 1481–1484.

    Article  CAS  Google Scholar 

  82. Gavezzotti, A. (1998) The crystal packing of organic molecules: Challenge and fascination below 1000 Da, Crystallography Reviews, 7, 5–121.

    Article  CAS  Google Scholar 

  83. Caira, M.R., Home, A., Nassimbeni, L.R. and Toda, F. (1997) Complexation with diol host compounds. Part 25. Selective inclusion of benzenediol isomers by 1,1-bis (4-hydroxyphenyl) cyclohexane, J Chem. Soc. Perkin Trans. 2, 1717–1720.

    Google Scholar 

  84. Gavezzotti, A. (1994) Are crystal structures predictable?,Acc. Chem. Res., 27 309–314.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nassimbeni, L.R. (1999). Thermodynamics and Kinetics of Crystalline Inclusion Compounds. In: Braga, D., Grepioni, F., Orpen, A.G. (eds) Crystal Engineering: From Molecules and Crystals to Materials. NATO Science Series, vol 538. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4505-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4505-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5899-2

  • Online ISBN: 978-94-011-4505-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics