Skip to main content

Nonlinearity in Modal Analysis

  • Chapter
Book cover Modal Analysis and Testing

Part of the book series: NATO Science Series ((NSSE,volume 363))

  • 1790 Accesses

Abstract

Nonlinearity is a topic which is difficult to avoid as all structures encountered in practice are nonlinear to some degree, the nonlinearity often being a function of factors such as boundary/initial conditions, material properties, previous history, excitation levels etc. Nonlinearity can occur in a global (eg material nonlinearity) or a local sense (eg joints/interfaces).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Material Nonlinearity in Vibration Problems, ASME 71, 1985.

    Google Scholar 

  2. Schmidt, G., Tondl, A. (1986), Nonlinear Vibration, CUP.

    Google Scholar 

  3. White, R. G. (1973), Effects of nonlinearity due to large deflections in the derivation of frequency response data from the impulse response of structures, Jnl Sound and Vibration, 29(3).

    Google Scholar 

  4. Wang, J. (1990), Dynamic modelling of joints, Doctoraatsthesis, Faculteit Toegepaste Weten Schappen, KUL, Belgium.

    Google Scholar 

  5. Bowden, M, Dugundji, J. (1990), Joint-damping and nonlinearity in the dynamics of space structures, AIAA Jnl, 28(4).

    Google Scholar 

  6. Crawley, E. F. and O’Donnell, K. J. (1986), Identification of nonlinear system parameters in joints using the force state mapping technique, AIAA Paper 86-1013, 659–667.

    Google Scholar 

  7. Gaul, L., Bohlen, S. (1987), Identification of nonlinear structural joint models and implementation in discretised structure models, Proc. 11th ASME Biennial Conf. on Mech Vibration and Noise, Boston.

    Google Scholar 

  8. Tomlinson, G. R. (1987), A theoretical and experimental study of the force characteristics from electrodynamic exciters on linear and nonlinear systems, Proc. 5“” IMAC, Imperial College, London, 1479–1487.

    Google Scholar 

  9. DTA Handbook on Nonlinearity in Dynamic Testing, Vol 4, DTA Cranfield University, 1994.

    Google Scholar 

  10. Tomlinson, G. R. (1979), Force distortion in resonance testing of structures with electrodynamic exciters, Journal of Sound and Vibration, 63(3), 227–350.

    Article  Google Scholar 

  11. Chen, S., Billings, S. A. (1989), Representations of nonlinear systems: the NARMAX model, Int. Jnl Control, 49, 1013–1032.

    MathSciNet  MATH  Google Scholar 

  12. Tsang, K. M., Billings, S. A. (1992), Reconstruction of linear and nonlinear continuous time models for discrete time sampled data systems, J. Mech. Syst. and Sig. Proc, 6, 69–84.

    Article  Google Scholar 

  13. Chen, Q., Tomlinson, G. R. (1992), Application of a series model for the identification of nonlinear stiffness and friction damped systems, 17th ISMA, KUL Belgium.

    Google Scholar 

  14. Chen, Q., Tomlinson, G. R. (1993), The identification of systems with combined friction and stiffness nonlinearities using a time series model, Acc. for publication in Journal of Vibrations and Acoustics, ASME.

    Google Scholar 

  15. Worden, K., Tomlinson, G. R. (1988), Identification of linear/nonlinear restoring force surfaces in single and multi-mode systems, Proc. 3 rd Int. Conf. on Recent Advances in Structural Dynamics, Southampton, 299–308.

    Google Scholar 

  16. Al-Hadid, M. A. (1989), Identification of nonlinear systems using the force-state mapping technique, Ph.D. Thesis, Univ. of London.

    Google Scholar 

  17. Worden, K. (1989), Parametric and non-parametric identification of nonlinearity in structural dynamics, Ph.D. Thesis, Heriot-Watt University, Edinburgh.

    Google Scholar 

  18. Wright, J. R., Hadid, M. A. (1991), Sensitivity of the force-state mapping approach to measurement errors, Int. Journal of Anal. and Exp. Modal Analysis, 6, 89–103.

    Google Scholar 

  19. Wyckaert, K. (1992), Development and evaluation of detection and identification schemes for the nonlinear dynamical behaviour of mechanical structures, Ph.D. Thesis, KUL Belgium.

    Google Scholar 

  20. Chouchai, T., Vinh, T. (1986), Analysis of nonlinear structures by impact testing and higher order transfer functions, Proc. 4th IMAC, Los Angeles.

    Google Scholar 

  21. Frachebourg, A. (1991), Identification of nonlinearities: application of the Volterra model to discrete MDOF systems, Proc. Florence Modal Anal. Conf., Florence.

    Google Scholar 

  22. Gifford, S. (1989), Volterra series analysis of nonlinear structures, Ph.D. Thesis, Heriot-Watt University, Edinburgh.

    Google Scholar 

  23. Scherzen, M. (1980), The Volterra And Wiener Theories Of Nonlinear Systems, J. Wiley and Sons Inc.

    Google Scholar 

  24. Marmarelis, V. Z. and Marmarelis, P. Z. (1978), Analysis of physiological systems: white noise approach, Plenum Press, New York.

    Google Scholar 

  25. Lee, Y. W. and Schetzen, M. (1965), Measurement of the Wiener kernels of a nonlinear system by cross-correlation, Int. Journal of Control, 2, 237–254.

    Article  Google Scholar 

  26. Gifford, S. J., Tomlinson, G. R. (1989), Recent advances in the application of functional series to nonlinear structures, Journal of Sound and Vibration, 135(2), 289–317.

    Article  Google Scholar 

  27. Voon, W. S. F., Billings, S. A. (1983), Structure detection and model validity tests in the ident. of nonlinear systems, IEE Proc. Pt D, 130, 193–199.

    MATH  Google Scholar 

  28. Billings, S. A. and Fadzil, M. B. (1985), The practical identification of systems with nonlinearities, Proc. IFAC Syst. Ident. and Param, Estimation, York.

    Google Scholar 

  29. Billings, S. A., and Tsang, K. I. M. (1990), Spectral analysis of block structured nonlinear systems, Mech. Syst, and Sig. Proc, 4, 117–130.

    Article  MATH  Google Scholar 

  30. Staszewski, W. (1994), The application of time variant analysis to gearbox fault detection, University of Manchester.

    Google Scholar 

  31. Staszewski, W., Tomlinson, G. R. (1994), Application of the Wavelet transform to the fault detection in a spur gear, Mech. Syst. and Sig. Proc, 8(3), 289–307.

    Article  Google Scholar 

  32. Chui, C. K. (1992), An Introduction To Wavelets, Academic Press, San Diego.

    MATH  Google Scholar 

  33. Ruskai, N. D., Charles and Bartlett (eds.) (1992), Wavelets And Their Applications, Boston.

    Google Scholar 

  34. Newland, D. E. (1993), An introduction to random vibrations, spectral and wavelet analysis, Longman Scientific and Technical, UK.

    Google Scholar 

  35. Daubechies, I. (1991), Ten Lectures on Wavelets, CBMS-NSF, Series in Applied Mathematics, Siam.

    Google Scholar 

  36. Daubechies, I. (1991), The wavelet transform: A method for time-frequency localization, in Simon Haykin (ed.), Advances In Spectrum Analysis And Array Processing, Vol. I, Prentice Hall Advanced Reference Series on Engineering, New Jersey.

    Google Scholar 

  37. Worden, K., Tomlinson, G. R. (1994), Modelling and classification of nonlinear systems using neural networks-I Simulation, Mech. Syst. and Sig. Proc, 8(3), 319–356.

    Article  MathSciNet  Google Scholar 

  38. Billings, S. A. et al (1991), Properties of neural networks with applications to modelling nonlinear dynamical systems, Int. Jnl of Control, 55, 193–224.

    Article  MathSciNet  Google Scholar 

  39. Masri, S. F. et al (1992), Structure unknown nonlinear dynamical systems: identification through neural networks, Smart Matls and Structures, 1, 45–46.

    Article  Google Scholar 

  40. Navenda, K. S. and Parthasarathy, K. (1990), Identification and control of dynamical systems using neural networks, IEEE Trans on Neural Networks, 1, 4–27.

    Article  Google Scholar 

  41. Brancaleoni, F., Spina, D., Valente, C. (1993), Damage assessment from the dynamic response of deteriorating structures, Safety Evaluation based on Identification Approaches, pub. Vieweg, ISBN 3-528-06535-4.

    Google Scholar 

  42. Mohammad, K. S., Tomlinson, G. R. (1989), A simple method of accurately determining the damping in nonlinear structures, Proc. 7th IMAC, Las Vegas, 1336–1346.

    Google Scholar 

  43. Tomlinson, G. R. (1985), Vibration analysis and identification of nonlinear structures, Short Course Notes, University of Manchester.

    Google Scholar 

  44. Vinh, T. (1986), Etudes des Structures nonlineaires, Session de perfectionment: Dynamique des structure — Institut Supérieur des Materiaux et de la Construction Mecanique, St. Ouen, Paris.

    Google Scholar 

  45. Cartmell, M. (1990), Introduction to Linear, Paramatric and Nonlinear Vibrations, Chapt. 5, Chapman and Hall.

    Google Scholar 

  46. Tomlinson, G. R. (1986), Detection, identification and quantification of nonlinearity in modal analysis — a review, Proc. 4th IMAC, LA, 837–843.

    Google Scholar 

  47. He, J. (1987), Identification of structural dynamic characteristics, Ph.D. Thesis, Imperial College, London.

    Google Scholar 

  48. Ruder, M. (1983), Identification of the dynamic characteristics of a simple system with quadratic damping, Série de Mécanique Appliquée, 28(4), 439–446.

    Google Scholar 

  49. Peccate, L. (1984), Reciprocals of mobility and receptance — application to nonlinear systems, Int. Report, University of Manchester.

    Google Scholar 

  50. Rauch, A.(1992), Coherence, — a powerful estimator of nonlinearity, theory and application, Proc. 10th IMAC, San Diego, 784–795.

    Google Scholar 

  51. Tomlinson, G. R. (1987), Developments in the use of the Hilbert transform for detecting and quantifying nonlinearity associated with frequency response functions, Mech. Syst. and Sig. Proc, 1(2), 151–171.

    Article  MATH  Google Scholar 

  52. Worden, K. and Tomlinson, G. R. (1991), The high frequency behaviour of frequency response functions and their effect on the Hilbert transform, Proc. 9th IMAC, Orlando.

    Google Scholar 

  53. King, N. and Tomlinson, G. R. (1993), Automated nonlinearity detection in aircraft ground vibration testing, Proc. Int. Forum on Aeroelasticity and Struct. Dynamics, Strasbourg, Vol 2, 767–786.

    Google Scholar 

  54. King, N. (1994), Detection of structural nonlinearity using Hilbert transform procedures, Ph.D. Thesis to be submitted, Engineering Department, University of Manchester.

    Google Scholar 

  55. Storer, D. and Tomlinson, G. R (1993), Recent developments in the measurement and interpretation of higher order transfer functions from nonlinear structures, Mech. Syst and Sig. Proc, 7(2), 173–189.

    Article  Google Scholar 

  56. Storer, D. (1991), Dynamic analysis of nonlinear structures using higher order frequency response functions, Ph.D. Thesis, Engineering Department, University of Manchester.

    Google Scholar 

  57. Lee, G. M. and Tomlinson, G. R. (1994), A study of the convergence characteristics of the Volterra Series applied to the Duffing oscillator with a harmonic input, to be published, Journal of Sound and Vibration.

    Google Scholar 

  58. Tomlinson, G. R. (1991), The use of higher order frequency response functions in nonlinear structural dynamics, Proc. 4th Int. Conf. on Recent Advances in Struct. Dynamics, University of Southampton, 43–57.

    Google Scholar 

  59. Billings, S. A. and Tsang, K. M. (1989), Spectral analysis for nonlinear systems, Parts I and II, Mech. Syst. and Sig. Proc., 3(4).

    Google Scholar 

  60. Worden, K., Manson, G. and Tomlinson, G. R. (1994), Pseudo fault induction in engineering structures, Proc. Royal Soc., Part A, LONDON, UK, 193–229.

    Google Scholar 

  61. Choi, D. N. et al (1990), Bispectral identification of nonlinear mode interaction, Proc. 8th IMAC, Orlando.

    Google Scholar 

  62. Brillinger D. R. (1970), The identification of polynomial systems by means of higher order spectra, Journal of Sound and Vibration, 12(3), 301–313.

    Article  MATH  Google Scholar 

  63. Brillinger, D. R. and Rosenblatt, M. (1967), Spectral Analysis Of Time Series, Ed. B. Harris, Wiley.

    Google Scholar 

  64. Bendat, J. S. (1990), Nonlinear System Analysis and Identification, John Wiley.

    Google Scholar 

  65. Drazin, P. (1993), Nonlinear Systems, Cambridge University Press.

    Google Scholar 

  66. Moon, F. C. (1987), Chaotic Vibrations, John Wiley Interscience.

    Google Scholar 

  67. Nayfeh, A. H., Mook, D. T. (1979), Nonlinear Oscillations, John Wiley and Sons, London and New York.

    MATH  Google Scholar 

  68. Schetzen, M. (1980), The Volterra and Wiener Theories of Nonlinear Systems, John Wiley Interscience, New York.

    MATH  Google Scholar 

  69. Schmidt, G., Tondl, A. (1986), Nonlinear Vibrations, Cambridge University Press.

    Google Scholar 

  70. Starjinski, V. (1980), Methods Appliquées en Theorie des Oscillations Non Linearities, Ed. MIR, Moscow.

    Google Scholar 

  71. Thompson, J. M. T., Steward, H. B. (1986), Nonlinear Dynamics and Chaos, John Wiley and Sons, London and New York.

    MATH  Google Scholar 

  72. Cartmell, M. (1990), Introduction To Linear, Parametric And Nonlinear Vibrations, Chapman and Hall, London.

    MATH  Google Scholar 

  73. King, N. E. (1994), Detection of nonlinearity using Hilbert transform procedures, Ph.D. Thesis, University of Manchester.

    Google Scholar 

  74. Manson, G. (1996), Analysis of nonlinear mechanical systems using the Volterra series, Ph.D. Thesis, University of Manchester.

    Google Scholar 

  75. Spina, D., Valente, C., Tomlinson, G. R. (1996), A new procedure for detecting nonlinearity from transient data using the Gabor transform, Journal of Nonlinear Dynamics, Vol. 11, No. 3, 235–254.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tomlinson, G.R. (1999). Nonlinearity in Modal Analysis. In: Silva, J.M.M., Maia, N.M.M. (eds) Modal Analysis and Testing. NATO Science Series, vol 363. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4503-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4503-9_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5894-7

  • Online ISBN: 978-94-011-4503-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics