Skip to main content

Acoustic Modal Analysis

  • Chapter
Modal Analysis and Testing

Part of the book series: NATO Science Series ((NSSE,volume 363))

Abstract

The phenomena, related to the existence of acoustic modes, were already known in the ancient world and our ancestors, though instinctively, have even exploited some of the acoustic effects [1]. The first treatments of scientific character of the field date back to the 19thcentury [2,3] while the basics of the modal theory of room acoustics were developed in the first half of this century [4–7]. Nevertheless, a revival of the acoustic modal theory and its experimental aspects seems to be worthwhile for a couple of reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See e.g. the application of the so called Vitruvius vases to improve the acoustics of ancient Greek theatres and Turkish minarets. Referenced by Tarnóczy: Acoustical design. Müszaki Könyvkiadó, Budapest, 1966. (In Hungarian)

    Google Scholar 

  2. Duhamel, J.M.C. (1849), On the vibration of a gas in cylindrical, conical etc., tubes, J. Math. Pures Appl., 14, 49–110.

    Google Scholar 

  3. Rayleigh, J.W.S. (1945), The Theory of Sound, Vol. 2, 2 nd ed., Dover, New York,.

    Google Scholar 

  4. Schuster, K. and Wetzmann, E. (1929), On reverberation in closed spaces, Ann. Phys., 1(5), 671–695.

    Article  MATH  Google Scholar 

  5. Strutt, M.J.O. (1929), On the acoustics of large rooms, Phil. Mag., 8(7), 236–250.

    MATH  Google Scholar 

  6. Morse, Ph.M. and Bolt, R.H. (1944), Sound waves in rooms, Rev. Modern Physics, 16(2), 69–147.

    Article  Google Scholar 

  7. Cremer, L. (1950), Die wissenschaftlichen Grundlagen der Raumakustik., Vol.2, Wellentheoretische Raumakustik., S. Hirzel, Stuttgart.

    Google Scholar 

  8. Pierce, A.D. (1981), Acoustics. An introduction to its physical principles and applications, McGraw-Hill, New York.

    Book  Google Scholar 

  9. Singh, R., Lyons, W. M. and Prater, G. (1989), Complex eigensolution from longitudinally vibrating bars with a viscously damped boundary, J. Sound Vib., 133(2), 364–367.

    Article  MATH  Google Scholar 

  10. Prater, G. and Singh, R. (1991), Complex modal analyis of non-proportionally damped continuous rods, The Int. Journ. Analytical and Experimental Modal Analysis, 6(1), 13–24.

    Google Scholar 

  11. Beranek, L.L. and I., Vér (Eds.) (1992), Noise And Vibration Control Engineering, Chap. 6, McGraw-Hill, New York,.

    Google Scholar 

  12. Nefske, D.J. and Sung, Sh.H. (1990), Sound in small enclosures, General Motors Res. Lab. Research Publication, GMR-7069, Warren.

    Google Scholar 

  13. Skudrzyk, E. (1971), The Foundations Of Acoustics. Basic Mathematics And Basic Acoustics, Springer, Wien.

    Google Scholar 

  14. Firestone, F.A. (1938), The mobility method of computing the vibrations of linear mechanical and acoustical systems: mechanical-electrical analogies, J. Appl. Phys., 9, 373–387.

    Article  Google Scholar 

  15. Beranek, L.L. (1954), Acoustics, McGraw-Hill, New York,.

    Google Scholar 

  16. Barat Z. (1975), Technical Acoustics, Course notes, University of Technology, Budapest,. (Manuscript; in Hungarian)

    Google Scholar 

  17. Everstine, G.C. (1981), Structural analogies for scalar field problems, Int. Journ. Numerical Methods in Engineering, 17, 471–476.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Petyt (1983), Finite element techniques for acoustics, in P. Filippi (ed.), ICMS Courses and Lectures No. 277, Theoretical acoustics and numerical techniques, Springer, Wien,.

    Google Scholar 

  19. Göransson, P. (1992), Acoustic finite elements, Proc. 17th Int. Seminar on Modal Analysis, Course on advanced techniques in applied acoustics, Part VI, Leuven,.

    Google Scholar 

  20. Fahy, F. (1985), Sound And Structural Vibration. Radiation, Transmission And Response. Academic Press, London,.

    Google Scholar 

  21. Augusztinovicz F., Sas, P., Otte, D. and Larsson, P.O. (1992), Analytical and experimental study of complex modes in acoustical systems, Proc. 10 “’ Int. Modal Analysis Conference, Vol. I, San Diego, 110–116.

    Google Scholar 

  22. Formenti, D., Allemang, R., Rost, R. et al. (1992), Analytical and experimental modal analysis, Proc. l7th Int. Seminar on Modal Analysis, Basic course on experimental modal analysis, Leuven,.

    Google Scholar 

  23. Bishop, R.E.D., Gladwell, G.M.L. and Michaelson, S. (1979), The Matrix Analysis of Vibration, Cambridge University Press, Cambridge, UK.

    Book  MATH  Google Scholar 

  24. Smith, D.L. (1976), Experimental techniques for acoustic modal analysis of cavities, Proc. Inter-Noise 76, Washington, 129–132.

    Google Scholar 

  25. Nieter, J.J. and Singh, R. (1982), Acoustic modal analysis experiment, J. Acoust. Soc. Amer. 72(2), 319–326.

    Article  Google Scholar 

  26. Kung, Ch.H. and Singh, R. (1985), Experimental modal analysis technique for three-dimensional acoustic cavities, J. Acoust. Soc. Amer., 77(2), 731–738.

    Article  Google Scholar 

  27. Singh, R. and Schary, M. (1978), Acoustic impedance measurement using sine sweep excitation and known volume velocity technique, J. Acoust. Soc. Amer. 64(4), 995–1005.

    Article  Google Scholar 

  28. Salava, T. (1974), Sources of constant volume velocity and their use for acoustic measurements, J. Audio Eng. Soc., 22, 145–153.

    Google Scholar 

  29. Peter van der Linden, Personal communication.

    Google Scholar 

  30. Sas, P., Augusztinovicz, F., Van de Peer, J. and Desmet, W. (1993), Modelling the vibro-acooustic behaviour of a double wall structure, Proc. of the 4th Int. Seminar on Applied Acoustics, Leuven.

    Google Scholar 

  31. Brown, D.L. and Allemang, R.J. (1978), Modal analysis techniques applicable to acoustic problem solution, Proc. Inter-Noise 78, 909–914.

    Google Scholar 

  32. Cafeo, J.A. and Trethewey, M.W. (1984), An experimental acoustical modal analysis technique for the evaluation of cavity characteristics, Proc. Inter-Noise 84, Honolulu, 1367–1370.

    Google Scholar 

  33. Fyfe, K.R. and Ismail, F. (1987), Application of modal analysis to the acoustic modelling of vibrating cylinders, Proc. 5 1 IMAC, 336–342.

    Google Scholar 

  34. Okubo, N. and Masuda, K. (1990), Acoustic sensitivity analysis based on the results of acoustic modal testing, Proc. 8th IMAC, 210–214.

    Google Scholar 

  35. Fyfe, K.R., Cremers, L., Sas, P. and Creemers, G. (1991), The use of acoustic streamlines and reciprocity methods in automotive design sensitivity studies, Mech. Systems Signal Proc., 5(5), 431–441.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sas, P., Augusztinovicz, F. (1999). Acoustic Modal Analysis. In: Silva, J.M.M., Maia, N.M.M. (eds) Modal Analysis and Testing. NATO Science Series, vol 363. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4503-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4503-9_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5894-7

  • Online ISBN: 978-94-011-4503-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics