Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 362))

Abstract

This paper attempts to show how the structural, physical and chemical properties of clay minerals relate to their laboratory, industrial and environmental uses as sorbents and catalysts. A brief review of the formulae, structures of clays and their relationship to their chemical and physical properties is given. Isomorphous substitution of layer cations generates layer charges, which are neutralised by the presence of exchangeable, compensating ions in the interlayer. Acid activation increases clay surface areas, acidity and sorption characteristics producing large volumes of acidic aluminium salt waste. Cationic clays often have high Brønsted and Lewis acidity, which enable the clays to be used as clean, often highly specific catalysts in organic and inorganic reactions or as supports for catalysts or reagents.

Batch cation exchange experiments can be used in the comparison of the exchange sites available in intact and acid activated minerals, via Langmuir or Freundlich type isotherms and Rd plots. Industrially clays are used to form gels, in the removal of carotenoids and chlorophyll in the production of cooking oils and light coloured soaps, in cat litter and in carbonless copying paper. Singlet oxygen generated by these dyes in the latter case causes fading of the image, an autocatalytic effect in their own destruction. In the laboratory clays have been used extensively as acid catalysts, as selective supports in g.c. and as active supports for oxidants (e.g. clayfen and claycop) and Lewis acids (e.g. clayzic) and as regioselective catalysts for Diels-Alder reactions and for the generation of reactive intermediates such as carbenes. The thermodynamically less favoured isomer can often be selected for if the transition state of formation is less bulky.

In the environment, clay minerals are highly important in soils, as they swell and retain water, act as pH buffers and as slow release agents for essential minerals and adsorb crude oil and radionuclides from spills and leaks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Laszlo P., Catalysis of organic reactions by inorganic solids, Acc. Chem. Res. 19, 121–127 (1986).

    Article  CAS  Google Scholar 

  2. Cornelis A. and Laszlo P., “Preparative organic chemistry using clays”, in R. Setton (Ed.), Chemical Reactions in Organic and Inorganic Constrained Systems, Reidel, New York, pp. 213–218 (1986).

    Chapter  Google Scholar 

  3. Theng B.K.G., “Clay activated organic reactions”, in Van Olphan and Veniale (Eds.), Developments in Sedimentology No. 35 (Intern. Clay Conf., 1981), Elsevier, Amsterdam, pp. 197–238 (1982).

    Google Scholar 

  4. Theng B.K.G., The Chemistry of Clay-Organic Reactions, Adam Hilger, London (1974).

    Google Scholar 

  5. McCabe R.W., “Clay chemistry”, in D.W. Bruce and D. O’Hare (Eds.), Inorganic Materials, 2nd ed., John Wiley and Sons, New York, pp. 313–376 (1996).

    Google Scholar 

  6. Hadding A., Z. Krist. 58, 108–112 (1923).

    CAS  Google Scholar 

  7. Rinne F., Z Krist. 60, 55–69 (1924).

    CAS  Google Scholar 

  8. Hendricks S.B. and Fry W.H., Results of x-ray and microscopical examination of soil colloids, Soil Sci. 29, 457–478 (1930).

    Article  CAS  Google Scholar 

  9. Pauling L., Structure of mica and related minerals, Proc. Nat. Acad. Sci., 16, 123–129 & 578-582 (1930).

    Article  CAS  Google Scholar 

  10. Kelley W.P., Dore W.H. and Brown S.M., The structure of chlorites, Soil Sci. 31, 25–45 (1931).

    Article  CAS  Google Scholar 

  11. W.P. Kelley, W.H. Dore and S.M. Brown, Nature of the base exchange material of bentonite soils and zeolites, Soil Sci., 31, 25–45 (1931).

    Article  CAS  Google Scholar 

  12. Brindley G.W., X-ray Identification and Crystal Structures of Clay Minerals, The Mineralogical Society, London, (1951).

    Google Scholar 

  13. Ginsberg I.I. and Yashina R.R., Dokl. K. Sobraniyu Mezhdunar. Komis, po Izuch. Glin. Akad. Nauk. USSR, 59–67(1960).

    Google Scholar 

  14. Beutelspacher H. and Van der Morel H.W., Amorphous materials in clays of various soils, Acta. Univ. Cardinae Geol. Supl. 1, 97–114 (1961).

    Google Scholar 

  15. Vali H. and Koester H.M., Expanding behaviour, structural disorder, regular and random irregular interstratification of 2-1 layer-silicates studied by high-resolution images of transmission electron-microscopy, Clay Miner. 21(5), 827–859 (1986).

    Article  CAS  Google Scholar 

  16. Edelman C.H. and Favejee J.C.L., The crystal structure of montmorillonite and halloysite, Zeit. Kryst. 102, 417 (1940).

    CAS  Google Scholar 

  17. Quirk J.P., Negative and positive adsorption of chloride by kaolinite, Nature 188, 253–254 (1961).

    Article  Google Scholar 

  18. Hoffman U., Endel K. and Wiln K., Crystal structure and the swelling of montmorillonite, Zeit. Krist. 86, 340–348 (1933).

    Google Scholar 

  19. Marsheils C.E., Zeit. Kryst. 91, 433 (1935).

    Google Scholar 

  20. Maegdefrau E. and Hoffman U., The crystal structure of montmorillonite, Zeit. Kryst. 98, 299–323 (1937).

    CAS  Google Scholar 

  21. Hendricks S.B., Lattice structure of clay minerals and some properties of clays, J. Geol. 50, 276–290 (1942).

    Article  CAS  Google Scholar 

  22. Grimshaw R.W., Chemistry and Physics of Clays, Benn, London (1971).

    Google Scholar 

  23. Brindley G.W. and Brown G., Crystal Structures of Clay Minerals and their X-Ray Identification, Mineralogical Society, London (1980).

    Google Scholar 

  24. Bradley W.F., Grim R.E. and Clark G.L., The behaviour of montmorillonite on wetting, Zeit. Kryst. 97, 216–222 (1937).

    CAS  Google Scholar 

  25. McL. Mathieson A. and Walker G.F., Crystal structure of magnesium vermiculite, Am. Mineralogist 39, 231–255 (1954).

    Google Scholar 

  26. Fahn R., SME-AIME Fall Meeting, Tuscol, Arizona, U.S. (1979).

    Google Scholar 

  27. Kahn R. and Fenderl K., Reaction products of organic dye molecules with acid-treated montmorillonite, Clay Minerals 18, 447–458 (1983).

    Article  Google Scholar 

  28. Grim R.E. and Kulbicki G., Clay minerals reactions at high temperature, Amer. Mineralogist 46, 1329–1369 (1961).

    CAS  Google Scholar 

  29. Norrish K., Crystal swelling of montmorillonite, Disc. Farad. Soc. 18, 120–134 (1954).

    Article  CAS  Google Scholar 

  30. Kelley W.P., Cation Exchange in Soils, Rheinhold, New York (1948).

    Google Scholar 

  31. McCabe R.W., Adams J.M. and Martin K., Clay and zeolite catalysed cyclic anhydride formation, J. Chem. Res.(S) 356–357 (1985).

    Google Scholar 

  32. Thiessen P.A., The reciprocal adsorption of colloids, Z. Elektrochem. 48, 675–681 (1942).

    CAS  Google Scholar 

  33. Michaels A.S., Rheological properties of clay systems, Ind. Eng. Chem. 50, 951–958 (1958).

    Article  CAS  Google Scholar 

  34. Foschamer G., Ann. Roy. Agr. Coll. Sweden 14, 171 (1850).

    Google Scholar 

  35. Hoffman U., Boehra H.P. and Gromes W., Measurement of crystals of clay minerals, Z. Anorg. Allgem. Chem. 308, 143–154 (1961).

    Article  Google Scholar 

  36. Grim R.E. and Bray R.H., The mineral composition of various ceramic clays, J. Am. Ceram. Soc., 19, 307–315 (1936).

    Article  CAS  Google Scholar 

  37. Bar A.L. and Tenderloo H.J., Kolloid-Beihefter 44, 97–126 (1936).

    CAS  Google Scholar 

  38. e.g. Morley G.F. and Gadd G.M., Sorption of toxic metals by fungi and clay minerals, Mycological Research 99, 1429–1438 (1995).

    Article  Google Scholar 

  39. Sawhney B.L., Selective sorption and fixation of cations by clay minerals, Clays and Clay Minerals 20, 93–100 (1972).

    Article  CAS  Google Scholar 

  40. Cremers A. and Paterson R., Comm. Eur. Communities [rep] Eur. 13013/1, Proc. Semin. Methods Codes Assess., Off-site Consequences, pp. 357–371 (1991).

    Google Scholar 

  41. Hird A.B., Rimmer D.L. and livens F.R., Total caesium fixing potential of acidic soils, J. Environ. Radioactivity 26, 103–118 (1995).

    Article  CAS  Google Scholar 

  42. Wang L., Reactions of Leuco Dyes on Acid Activated Clays, Ph.D. Thesis, University of Central Lancashire, (1993).

    Google Scholar 

  43. Mortland M.M. and Raman K.V., Surface acidity of smectites in relation to hydration, exchangable cation and structure, Clays and Clay Miner. 16, 393–398 (1968).

    Article  Google Scholar 

  44. Fripiat J.J. and Cruz-Crumplido M.I., Clays as catalysts for natural processes, Ann. Rev. Earth Planet Sci. 2, 239–256 (1974).

    Article  Google Scholar 

  45. Mortland M.M., Protonation of compounds at clay mineral surfaces, Trans. 9th Int. Congr. Soil Sci., 691-699 (1968).

    Google Scholar 

  46. W. Franz, P. Gunther and C.E. Hofstadt, “Catalysts based on acid activated bentonite”, Proc. 5th World Petrol. Congr. (New York), vol. 3, pp. 123–132 (1960).

    Google Scholar 

  47. Theng B.K.G., Mechanisms of formation of coloured clay-organic complexes, Clays and Clay Miner. 19, 383–390 (1971).

    Article  CAS  Google Scholar 

  48. Clark J.H., Cullen S.R., Barlow S.J. and Bastock T.W., Environmentally friendly catalysis using supported reagent catalysts — structure property relationships for clayzic, J. Chem. Soc., Perkin Trans. 2(6), 1117–1130(1994).

    Google Scholar 

  49. Barlow S.J., Bastock T.W., Clark J.H. and Cullen S.R., Activation of clayzic and its effect on the relative rates of benzylation of aromatic substrates, J. Chem. Soc, Perkin Trans. 2(3), 411–414 (1994).

    Google Scholar 

  50. Daley R.A., Dyer G. and McCabe R.W., unpublished results.

    Google Scholar 

  51. Fripiat J.J., Jelli A.N., Poncelet G. and André J., Thermodynasmic properties of adsored water molecules and electrical conduction in montmorillonites and silica, J. Phys. Chem. 69, 2185–2197 (1965).

    Article  CAS  Google Scholar 

  52. Touillaux R., Salvador P., Vandermeersche C. and Fripiat J.J., Study of the water layers adsorbed on sodium and calcium montmorillonite by the pulsed nuclear magnetic resonance technique, Israel J. Chem. 6, 337–349 (1968).

    CAS  Google Scholar 

  53. Solomon D.H., Swift J.D. and Murphy A.J., J. Macromol. Sci. Chem. A5, 587–601 (1971).

    Google Scholar 

  54. Benesi H.A., Acidity of catalyst surfaces (I) acid strength from colour of adsorbed indicators, J. Am. Chem. Soc. 78, 5490–5494 (1956).

    Article  CAS  Google Scholar 

  55. Benesi H.A., Acidity of catalyst surfaces (II) amine titration using Hammett indicators, J. Phys. Chem., 61, 970–973 (1957).

    Article  CAS  Google Scholar 

  56. Fowkes F.M., Benesi H.A., Ryland R.B., Sawyer W.M., Detling K.D., Loeffler E.S., Folckemer F.B., Johnson M.R. and Sun Y.P., Clay catalysed decomposition of insecticides, J. Agr. Food Chem. 8, 203–210 (1960).

    Article  CAS  Google Scholar 

  57. Henmi T. and Wada K., Surface acidity of imogolite and allophane, Clay Miner. 10, 231–245 (1974).

    Article  CAS  Google Scholar 

  58. Caine M.A., Fading of Carbonless Copying Paper, Ph.D. Thesis, Lancashire Polytechnic (1990).

    Google Scholar 

  59. Matsuda T., Asanuma M. and Kikuchi E., Effect of high temperature treatment on the activity of montmorillonite pillared by alumina in the conversion of 1,2,4-trimethylbenzene, Appl. Calai. 38, 289–299 (1988).

    Article  CAS  Google Scholar 

  60. Plee D., Schutz A., Poncelet G. and Fripiat J.J., “Acid properties of a bidimensional zeolite”, in B. Imelik, C. Naccache, G. Coudurier, Y. Ben Taarit and J.C. Vedrine (Eds.), Catalysis by Acids and Bases, Elsevier, Amsterdam, pp. 343–350 (1985).

    Chapter  Google Scholar 

  61. Tichit D., Fajula F., Figueras F., Bosquet J. and Gueguen C., “Thermal stability and acidity of aluminium(3+) ion crosslinked smectites”, in B. Imelik, C. Naccache, G. Coudurier, Y. Ben Taarit and J.C. Vedrine (Eds.), Catalysis by Acids and Bases, Elsevier, Masterdam, pp. 351–360 (1985).

    Chapter  Google Scholar 

  62. Solomon D.H., Swift J.D. and Murphy A.J., Clays as selective catalysts in organic synthesis, J. Macromol. Sci. Chem. A5, 587–601 (1971).

    Google Scholar 

  63. Mortland M.M. and Raman K.V., Surface acidity of montmorillonites, Clays and Clay Miner. 16, 393–398 (1968).

    Article  Google Scholar 

  64. Adams J.M., Clement D.E. and Graham S.H., Reaction of alcohols with alkenes over aluminium exchanged montmorillonite, Clays and Clay Miner. 31, 129–136 (1983).

    Article  CAS  Google Scholar 

  65. Weiss A., Replication and evolution in inorganic systems, Angew. Chem. Int. Ed. Engl. 20, 850–860 (1981).

    Article  Google Scholar 

  66. Breen C., Deane A. and Flynn J.J., The acidity of trivalent cation exchanged montmorillonite — temperature programmed desorption and infra red studies of pyridine and n-butylamine, Clay Miner. 22(2), 169–178 (1987).

    Article  CAS  Google Scholar 

  67. W. Franz, P. Gunter and C.E. Hofstadt, Catalysts based on acid activated bentonites, Erdöl u. Kohle, 12, 335 (1959).

    CAS  Google Scholar 

  68. Thomas C.L., Hickey J. and Strecker G., Clay cracking catalysts, Ind. Eng. Chem. 42, 866–871 (1950).

    Article  CAS  Google Scholar 

  69. Thomas C.L., Chemistry of cracking catalysts, Ind. Eng. Chem. 41, 2564–2573 (1949).

    Article  CAS  Google Scholar 

  70. Grenall A., Montmorillonite cracking catalysts — x-ray diffraction, Ind. Eng. Chem. 40, 2148–2151 (1948)

    Article  CAS  Google Scholar 

  71. Grenall A., Montmorillonite cracking catalysts — presence of H ions in heated Filtrol clay catalysts, ibid. 41, 1485–1489 (1949).

    CAS  Google Scholar 

  72. Mills G.A., Holmes J. and Cornelius E.B., Acid activation of bentonite clays, J. Physic. Colloid Chem. 54, 1170–1185 (1950).

    Article  CAS  Google Scholar 

  73. Ballantine J.A., “The reactions in clays and pillared clays”, in R. Setton (Ed.), Chemical Reactions in Organic and Inorganic Constrained Systems, Reidel, New York, pp. 197–212 (1986).

    Chapter  Google Scholar 

  74. Ballantine J.A., Davies M., O’Neil R.M., Patel I., Purnell J.H., Rayanakorn M., Williams K.J. and Thomas J.M., Organic reactions catalysed by sheet silicates — ester production by direct addition carboxylic acids to alkenes, J. Mol. Catal. 26, 57–77 (1984).

    Article  CAS  Google Scholar 

  75. Gregory R., Smith D.J.H. and Westlake D.J., The production of ethyl acetate from ethylene and acetic acid using clay catalysts, Clay Miner., 18, 431–435 (1983).

    Article  CAS  Google Scholar 

  76. Hoyer S., Laszlo P., Orlovic M. and Polla E., Catalysis by acidic clays of the protective tetrahydropyra-nylation of alcohols and phenols, Synthesis 655–657 (1986).

    Google Scholar 

  77. Nakajima Y. and Matsunaga F., “Catalysts for gas phase hydrolysis of aryl halides and their uses in preparation of phenols”, Jpn. Kokai Tokkyo Koho, Jpn. Patent 01304043 A2 (1989).

    Google Scholar 

  78. Laszlo P. and Pennetreau P., Catalysis of the Michael reaction, Tetrahedron. Lett. 26, 2645–2648 (1985).

    Article  CAS  Google Scholar 

  79. Penth B., “Organometallic lithium and magnesium compounds in clay powder mixtures”, Ger. Patent, DE 3637780 A1 (1988).

    Google Scholar 

  80. Naumann A., Ber. Deutch. Chem. Ges. 37, 4328 (1904).

    Article  CAS  Google Scholar 

  81. Balogh M., Cornells A. and Laszlo P., Cleavage of thioacetals by clay-supported metal nitrates, Tetrahedron Lett. 25, 3313–3316 (1984).

    Article  CAS  Google Scholar 

  82. McCabe R.W. (unpublished results).

    Google Scholar 

  83. Adams J.M., Dyer S., Martin K., Matear A. and McCabe R.W., Diels-Alder reactions catalysed by cation exchanged clay minerals, J. Chem. Soc., Perkin Trans. I 761–765 (1994).

    Google Scholar 

  84. Dyer G., Matear W.A. and McCabe R.W., The labilisation of chromium(III) complexes — the first examples of aluminosilicate catalysed inorganic reactions involving ligand substitution (submitted for publication).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Caine, M. et al. (1999). The Use of Clays as Sorbents and Catalysts. In: Misaelides, P., Macášek, F., Pinnavaia, T.J., Colella, C. (eds) Natural Microporous Materials in Environmental Technology. NATO Science Series, vol 362. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4499-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4499-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5889-3

  • Online ISBN: 978-94-011-4499-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics