Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 362))

Abstract

Chemical modifications of various clay minerals from the smectite group are discussed. Acid activation, i.e., partial dissolution of smectites in inorganic acids, is a common treatment applied to produce laboratory samples as well as industrial materials, such as adsorbents, catalysts, etc. The reaction product of an acid dissolution of a clay is independent on the starting mineral used. It is a hydrous amorphous partly protonated high surface silica phase. Proton-saturated smectites, prepared either via mild acid treatment or using ion-exchangers, are unstable materials undergoing autotransformation to their (H,Al,Fe,Mg)-forms. Mildly acid-treated montmorillonites exhibit a high catalytic activity. Acid treatment of tetraalkylammonium cation exchanged smectites produces hybrid catalysts of increased catalytic activity because of the enhanced hydrophobicity of the organoclay. Acid attack of the clay structure occurs not only from the particle edges but also from the interlayers.

The negative charge of the layers, arising from the partial non-equivalent substitution of the central atoms in the octahedral and/or tetrahedral sheets, is the most important feature of smectites. It can be chemically increased via structural FeIII reduction or decreased via Li+ fixation. Reduction of structural FeIII to FeII in smectites affects many properties of the clay. Over 90% of structural FeIII in smectites can be chemically reduced. The reduced clays are unstable and undergo reoxidation on air. Another method for modifying the layer charge and thus the properties of dioctahedral smectites is to heat the clay in the presence of Li+, causing the small Li+ ions to enter into the 2:1 layer structure, which decreases the layer charge. A partial stabilisation of FeII in chemically reduced smectites can be achieved via Li-saturation and heating of the reduced clay in an inert atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Siddiqui M.H.K., Bleaching Earths, Pergamon Press, London (1968).

    Google Scholar 

  2. Brown D.R., Clays as catalyst and reagent supports, Geologica Carpathica Ser. Clays 45, 45–56 (1994).

    Google Scholar 

  3. Fahn R. and Fenderl K., Reaction products of organic dye molecules with acid-treated montmorillonite, Clay Miner. 18, 447–458 (1983).

    Article  CAS  Google Scholar 

  4. Stucki J.W, “Structural iron in smectites”, in J.W. Stucki, B.A. Goodman and U. Schwertmann (Eds.), Iron in Soils and Clay Minerals, Reidel, Dordrecht, pp. 625–675 (1988).

    Chapter  Google Scholar 

  5. Hofmann U. and Kiemen R., Verlust der Austauschfähigkeit von Lithiuminonen an Bentonit durch Erhitzung, Z. Anorg. Allg. Chem. 262, 95–99 (1950).

    Article  CAS  Google Scholar 

  6. Calvet R. and Prost R., Cation migration into empty octahedral sites and surface properties of clays, Clays Clay Miner. 19, 175–186 (1971).

    Article  Google Scholar 

  7. Bujdák J., Slosiariková H., Nováková L. and Čičel B., Fixation of lithium cations in montmorillonite, Chem. Papers 45, 499–507 (1991).

    Google Scholar 

  8. Greene-Kelly R., The identification of montmorillonoids in clays, J. Soil Sci. 4, 233–237 (1953).

    CAS  Google Scholar 

  9. Alvero R., Alba M.D., Castro M.A. and Trillo J.M., Reversible migration of lithium in montmorillonite, J. Phys. Chem. 98, 7848–7853 (1994).

    Article  CAS  Google Scholar 

  10. Komadel P., Madejová J. and Stucki J.W., Partial stabilization of Fe(II) in ferruginous smectite by Lifixation, Clays Clay Miner. (in press, 1998).

    Google Scholar 

  11. Kaplan H., “One step process of acid activating mineral clays and alkylating phenolic compounds with an alkene hydrocarbon”, U.S. Patent 3287422 (1966).

    Google Scholar 

  12. Čičel B., Komadel P. and Nigrin M., Catalytic activity of smectites on dimerization of oleic acid, Coll. Czech. Chem. Commun. 57, 1666–1671 (1992).

    Article  Google Scholar 

  13. Adams J.M., Synthetic organic chemistry using pillared, cation-exchanged and acid-treated montmorillonite catalysts — A review, Appl. Clay Sci. 2, 309–342 (1987).

    Article  CAS  Google Scholar 

  14. Clark J.H., Cullen S.R., Barlow S.J. and Bastok T.W., Environmentally friendly chemistry using supported reagent catalysts: Structure-property relationships for Clayzic, J. Chem. Soc. Perkin Trans. 2, 1117–1130 (1994).

    Google Scholar 

  15. Figueras F., Pillared clays as catalysts, Catal. Rev., Sci. Eng. 30, 457–499 (1988).

    Article  CAS  Google Scholar 

  16. Mokaya R. and Jones W., Pillared acid-activated clay catalysts, J. Chem. Soc. Chem. Commun., 929–930(1994).

    Google Scholar 

  17. Bovey J. and Jones W., Characterisation of Al-pillared acid-activated clay catalysts, J. Mater. Chem. 4, 2027–2035 (1996).

    Google Scholar 

  18. Bovey J., Kooli F. and Jones W., Preparation and characterization of Ti-pillared acid-activated clay catalyst, Clay Miner. 31, 501–506 (1996).

    Article  CAS  Google Scholar 

  19. Mokaya R., Jones W., Davies W. and Whittle M.E., Preparation of alumina-pillared acid-activated clays and their use as chlorophyll adsorbents, J. Mater. Chem. 3, 381–387 (1993).

    Article  CAS  Google Scholar 

  20. Breen C., Zahoor F.D., Madejová J. and Komadel P., Characterisation and catalytic activity of acid treated, size fractionated smectites, J. Phys. Chem. B 101, 5324–5331 (1997).

    Article  CAS  Google Scholar 

  21. Vincente Rodríguez M. A., Suárez Barrios M., López-González J.D. and Bañares-Muñoz M.A., Acid activation of a ferrous saponite (griffithite): Physicochemical characterization and surface area of the products obtained, Clays Clay Miner. 42, 724–730 (1994).

    Article  Google Scholar 

  22. Komadel P., Madejová J., Janek M., Gates W.P., Kirkpatrick R.J. and Stucki J.W., Dissolution of hectorite in inorganic acids, Clays Clay Miner. 44, 228–236 (1996).

    Article  CAS  Google Scholar 

  23. Novák I. and Čičel B., Dissolution of smectites in hydrochloric acid: II. Dissolution rate as a function of crystallochemical composition, Clays Clay Miner. 26, 341–344 (1978).

    Article  Google Scholar 

  24. Breen C., Madejová J. and Komadel P., Characterisation of moderately acid-treated, size-fractionated montmorillonites using IR and MAS NMR spectroscopy and thermal analysis, J. Mater. Chem. 5, 469–474 (1995).

    Article  CAS  Google Scholar 

  25. Breen C., Madejová J. and Komadel P., Correlation of catalytic activity with infrared-red, 29Si MAS NMR and acidity data for HCl-treated fine fractions of montmorillonites, Appl. Clay Sci. 10, 219–230 (1995).

    Article  CAS  Google Scholar 

  26. Breen C., Zahoor F.D., Madejová J., Komadel P., Characterisation and catalytic activity of acid treated, size fractionated smectites, J. Phys. Chem. B 101, 5324–5331 (1997).

    Article  CAS  Google Scholar 

  27. Komadel P., Janek M., Madejová J., Weekes A. and Breen C., Acidity and catalytic activity of mildly acid-treated Mg-rich montmorillonite and hectorite, J. Chem. Soc., Faraday Trans. 93, 4207–4210 (1997).

    Article  CAS  Google Scholar 

  28. Čičel B. and Komadel P., “Structural formulae of layer silicates”, in J.E. Amonette and L.W. Zelazny (Eds.), Quantitative Methods in Soil Mineralogy, Soil Science Society of America, Madison, WI, pp. 114–136 (1994).

    Google Scholar 

  29. Komadel P., Stucki J.W., Čičel B., Readily HCl-soluble iron in the fine fractions of some Czech bentonites, Geologica Carpathica, Ser. Clays 44, 11–16 (1993).

    Google Scholar 

  30. Barshad I., Preparation of H-saturated montmorillonites, Soil Sci. 108, 38–42 (1969).

    Article  CAS  Google Scholar 

  31. Barshad I. and Foscolos A.E., Factors affecting the rate of the interchange reaction of adsorbed H+ on the 2:1 clay minerals, Soil Sci. 110, 52–60 (1970).

    Article  CAS  Google Scholar 

  32. Janek M. and Komadel P., Autotransformation of H-smectites in aqueous solution: The effect of octahedral cation content. Geologica Carpathica, Ser. Clays 44, 59–64 (1993).

    Google Scholar 

  33. Janek M., Komadel P. and Lagaly G., Effect of autotransformation on the layer charge of smectites determined by alkylammonium method, Clay Miner. 32, 623–632 (1997).

    Article  CAS  Google Scholar 

  34. Rhodes C.N. and Brown D.R., Catalytic activity of acid-treated montmorillonite in polar and nonpolar reaction media, Catal. Lett. 24, 285–291 (1994).

    Article  CAS  Google Scholar 

  35. Breen C., Watson R., Madejová J., Komadel P. and Klapyta Z., Acid-activated organoclays: Preparation, characterisation and catalytic activity of acid-treated tetra-alkylammonium exchanged smectites, Langmuir 13, 6473–6479 (1997).

    Article  CAS  Google Scholar 

  36. Breen C. and Watson R., Acid-activated organoclays: preparation, characterisation and catalytic activity of polycation-treated bentonites, Appl. Clay Sci. 12, 479–494 (1998).

    Article  CAS  Google Scholar 

  37. Komadel P., Lear P.R. and Stucki J.W., Reduction and reoxidation of nontronite: Extent of reduction and reaction rates, Clays Clay Miner. 38, 203–208 (1990).

    Article  CAS  Google Scholar 

  38. Komadel P., Madejová J. and Stucki J.W., Reduction and reoxidation of nontronite: Questions of reversibility, Clays Clay Miner. 43, 105–110 (1995).

    Article  CAS  Google Scholar 

  39. Bujdák J., Petrovičová I. and Slosiariková H., Study of water-reduced charge montmorillonite system, Geologica Carpathica, Ser. Clays 43, 109–111 (1992).

    Google Scholar 

  40. Madejová J., Bujdák J., Gates W.P and Komadel P., Preparation and infrared spectroscopic characterization of reduced-charge montmorillonite with various Li contents, Clay Miner. 31, 233–241 (1996).

    Article  Google Scholar 

  41. Komadel P., Bujdák J., Madejová J., Šucha V. and Elsass F., Effect of non-swelling layers on the dissolution of reduced-charge montmorillonite in hydrochloric acid, Clay Miner. 31, 333–345 (1996).

    Article  CAS  Google Scholar 

  42. Bujdák J. and Komadel P., Interaction of methylene blue with reduced charge montmorillonite, J. Phys. Chem. B 101, 9065–9068 (1997).

    Article  Google Scholar 

  43. Madejová J., Arvaiová B. and Komadel P., FTIR spectroscopic characterization of thermally treated Cu2+, Cd2+, and Li+ montmorillonites, Spectrochimica Acta A (submitted, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Komadel, P. (1999). Structure and Chemical Characteristics of Modified Clays. In: Misaelides, P., Macášek, F., Pinnavaia, T.J., Colella, C. (eds) Natural Microporous Materials in Environmental Technology. NATO Science Series, vol 362. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4499-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4499-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5889-3

  • Online ISBN: 978-94-011-4499-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics