Skip to main content

Testing and Modeling of Inelastic Behavior of Fibrous Composites

  • Chapter
Book cover Mechanics of Composite Materials and Structures

Part of the book series: NATO Science Series ((NSSE,volume 361))

  • 1107 Accesses

Abstract

An orthotropic plasticity model was developed for unidirectionally reinforced fibrous composites. A simplified plastic potential function with a single parameter was proposed for the flow rule. The parameters of the plasticity model were determined by simple tension tests on off-axis composite specimens. It was shown that this plasticity model was able to characterize the nonlinear behavior of polymeric and metal-matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hahn, H. T., Tsai, S. W. (1973) Nonlinear elastic behavior of unidirectional composite Laminae, J. Composite Materials, 7 102–118.

    Article  ADS  Google Scholar 

  2. Sun, C. T., Feng, W. H., Koh, S. L. (1974) A theory for physically nonlinear elastic fiber-reinforced composites, International. J. Engineering Science, 12 919–935.

    Article  MATH  Google Scholar 

  3. Dvorak, G. J., Bahei-El-Din, Y. A. (1979) Elastic-plastic behavior of fibrous composites, J. of Mechanical and. Physical Solids, 27 51–72.

    Article  ADS  MATH  Google Scholar 

  4. Dvorak, G. J., Bahei-El-Din, Y. A. (1982) Plasticity analysis of fibrous composites, J. Applied Mechanics, 49 327–335.

    Article  ADS  MATH  Google Scholar 

  5. Chamis, C. C., Sullivan, T. L. (1973) Theoretical and experimental investigation of the nonlinear behavior of boron aluminum composites, NASA TM X-68-205, NASA-Lewis Research Center, Cleveland, OH.

    Google Scholar 

  6. Adams, D. F. (1970) Inelastic analysis of a unidirectional composite subjected to transverse normal loading, J. Composite. Materials, 4, 310–328.

    Article  ADS  Google Scholar 

  7. Foye, R. L. (1973) Theoretical post-yielsding behavior of composite laminates, Part I — Inelastic micromechanics, J. Composite Materials, 7, 178–193.

    Article  ADS  Google Scholar 

  8. Lin, T. H., Salinas, D., Ito, Y. M. (1972), Initial yield surface of a unidirectionally reinforced composite, J. of Applied. Mechanics., 39 321–326.

    Article  ADS  Google Scholar 

  9. Bahei-El-Din, Y. A., Dvorak, G. J. (1980) Plastic deformation of a laminated plate with a hole, J. of Applied Mechanics, 42, 385–389.

    Google Scholar 

  10. Johnson, W. S., Lubowinski, S. J., Highsmith, A. L., Brewer, W. D., Hoogstraten, C. A. (1988) Mechanical characterization of SCS6/Ti-15-3 metal mamx composites at room temperature, Mechanical Characterization of SCS6/Ti-15-3 MetalMatrix Composites at Room Temperature, NASA-Langley Research Center, Hampton, VA:NASP Technical Memorandum 1014.

    Google Scholar 

  11. Griffin, O. H., Kamat, M. P., Herakovich, C. T. (1981), Three-dimensional inelastic finite element analysis of laminated composites, J. Composite Materials, 5, 543–560.

    ADS  Google Scholar 

  12. Hill, R. (1948), A theory of the yielding and plastic flow of anisotropic metals, Proceedings of the Royal Society, Mathematical and Physical Sciences, 193, 1033, 281–297.

    Article  MATH  Google Scholar 

  13. Kenaga, D, Doyle, J. F., Sun, C. T. (1987), The characterization of boron/aluminum composite in the nonlinear range as an orthotropic elastic-plastic material, J. Composite Materials, 21 516–531

    Article  ADS  Google Scholar 

  14. Sun, C. T, Chen, J. K. (1987) Effect of plasticity on free edge stresses in boronaluminum composite laminates, J. Composite Materials, 21 969–985.

    Article  ADS  Google Scholar 

  15. Sun, C. T., Chen, J. L. (1989) A simple flow rule for characterizing nonlinear behavior of fiber composites, J. Composite Materials, 36 321–337

    Google Scholar 

  16. Sun, C. T., Yoon, K. J. (1989) Characterization of elastic-plastic behavior of AS4/PEEK thermoplastic composite for temperature variation, J. Composite Materials, 25 1297–1313

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sun, C.T. (1999). Testing and Modeling of Inelastic Behavior of Fibrous Composites. In: Soares, C.A.M., Soares, C.M.M., Freitas, M.J.M. (eds) Mechanics of Composite Materials and Structures. NATO Science Series, vol 361. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4489-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4489-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5871-8

  • Online ISBN: 978-94-011-4489-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics