Skip to main content

On the Earth’s Bow Shock Near Solar Minimum

  • Chapter
Interball in the ISTP Program

Part of the book series: NATO Science Series ((ASIC,volume 537))

  • 158 Accesses

Abstract

Earth’s bow shock represents the outermost boundary between that region of geospace which is influenced by Earth’s magnetic field and the undisturbed interplanetary medium streaming from the Sun. This boundary is important because it is here that the streaming solar wind is slowed, heated, and partially deflected around the Earth’s magnetosphere. The bow shock has been extensively mapped and modeled ever since it was first discovered a number of decades ago and its gross position and shape are essentially known [e.g., Spreiter et al.,1966; Fairfield, 1971; Peredo et al., 1995]. These are empirical models described by a stand-off distance from the Earth at the nose and the amount of flaring on the flanks. The position and shape vary with solar wind conditions such as the direction of the interplanetary magnetic field (IMF), the Alfvenic and fast magnetosonic Mach numbers. and the ram pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, D.N. et al.. Relativistic electron acceleration and decay time scales in the inner and outer radiation belts: SAMPEX, Geophys. Res. Lett., 21, 409–412. 1994.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Microscale structures in the interplanetary medium, Sol. Phys.,4, 67, 1968.

    Article  ADS  Google Scholar 

  • Fairfield, D. Average and unusual location of the Earth’s magnetopause and bow shock, J. Geophys. Res., 76, 6700, 1971.

    Article  ADS  Google Scholar 

  • Frank, L.A., et al., Comprehensive Plasma Instrument (CPI), in Geotail Prelaunch Report. Institute of Space and Astronautical Science SES Data Center, SES-TD-92–007SY. 179–238. 1992.

    Google Scholar 

  • Fung, S.F. and L.C. Tan, Time correlation of low-altitude relativistic trapped electron fluxes with solar wind speeds. Geophys. Res. Lett., 25, 13, 2361–2364. 1998.

    Article  ADS  Google Scholar 

  • Gazis, P.R., Solar Cycle Variation in the Heliosphere; Reviews of Geophysics, 34,3. 1996.

    Article  Google Scholar 

  • Kessel, et al., Shock Normal Determination for Multiple Ion Shocks. J. Geophys. Res., 99. 19359. 1994.

    Article  ADS  Google Scholar 

  • Kokubun, S., T. Yamamoto, M. H. Acuna, K. Hayashi, K. Shiokawa, and H. Kawano. The GEOTAIL magnetic field experiment. J. Geomag. Geoelectr., 46. 7–21. 1994.

    Article  Google Scholar 

  • Lepidi, S., U. Villante, A.J. Lazarus, A. Szabo, and K. Paularena, Observations of bow shock motion during times of variable solar wind conditions. J. Geophys. Res.,101, 11107–11123, 1996.

    Article  ADS  Google Scholar 

  • Lepping. R.P., and K.W. Behannon. Magnetic field directional discontinuities: characteristics between 0.46 and 1.0 AU, J. Geophys. Res., 91, 8725, 1986.

    Article  ADS  Google Scholar 

  • Lepping, R.P., et al.. The Wind Magnetic Field Investigation; in The Global Geospace Mission, ed. C.T. Russell. Kluwer Academic Publishers. 207–229. 1995.

    Google Scholar 

  • Lepping, R.P., A. Szabo, K.W. Ogilvie, R.J. Fitzenreiter, A. J. Lazarus, and J.T. Steinberg, Magnetic cloud-bow shock interaction: WIND and IMP 8 observations, Geophys. Res. Lett., 23. 10, 1195, 1996.

    Article  ADS  Google Scholar 

  • Lin, Y., L.C. Lee, and M. Yan, Generation of dynamic pressure pulses downstream of the bow shock by variations in the interplanetary magnetic field orientation, J. Geophys. Res.,101, 479, 1996.

    Article  ADS  Google Scholar 

  • Mellott, M.M., Subcritical Collisionless Shock Waves, in Collisionless Shocks in the Heliosphere: Reviews of Current Research, p. 131, edited by B.T. Tsurutani and R.G. Stone, AGU, Washington, D.C., 1985.

    Google Scholar 

  • Ogilvie, K.W., et al., SWE, A Comprehensive Plasma Instrument for the Wind Spacecraft, in The Global Geospace Mission, ed. C.T. Russell, Kluwer Academic Publishers, 55–77. 1995.

    Google Scholar 

  • Phillips et al., Ulysses solar wind plasma observations from pole to pole, Geophys. Res. Lett., 22, 3301, 1995.

    Article  ADS  Google Scholar 

  • Richardson, J.D. and K.I. Paularena, Streamer belt structure at solar minima. Geophys. Res. Lett., 24, 11, 1435, 1997.

    Article  ADS  Google Scholar 

  • Russell, C.T., Planetary Bow Shocks, in Collisionless Shocks in the Heliosphere:Reviews of Current Research, p. 109, edited by B.T. Tsurutani and R.G. Stone, AGU, Washington, D.C., 1985.

    Chapter  Google Scholar 

  • Scudder, J.D., L.F. Burlaga, E.W. Greenstadt, Scale Lengths in Quasi-Parallel Shocks, J. Geophys. Res., 89. A9, 7545–7550, 1984.

    Article  ADS  Google Scholar 

  • Smit, G.R., Oscillatory motion of the nose region of the magnetopause, J. Geophys. Res.,73, 4990, 1968.

    Article  ADS  Google Scholar 

  • Spreiter, J.R., A.L. Summers, and A.Y. Alksne, Hydromagnetic flow around the magnetosphere, Planet. Space Sci., 14. 223, 1966.

    Article  ADS  Google Scholar 

  • Vaughan, William W., Date Estimated for Maximum of Solar Cycle 23, EOS, 79. 7, p. 84, 1998.

    Article  ADS  Google Scholar 

  • Volk, Heinrich J. and Rolf-Dieter Auer, Motions of the Bow Shock Induced by Interplanetary Disturbances, J. Geophys. Res.,79, 40, 1974.

    Article  ADS  Google Scholar 

  • Williams, D.J., B. Tossman, C. Schlemm II, Energetic Particles and Ion Composition Instrument (EPIC), in Geotail Prelaunch Report, Institute of Space and Astronautical Science SES Data Center, SES-TD-92007SY, 157–178. 1992.

    Google Scholar 

  • Zastenker, G.N., et al., Bow shock motion with two-point observations: Prognoz 7, 8 and ISEE 1, 2; Prognoz 10 and IMP 8, Adv. Space Res. 8, 171–174, 1988.

    ADS  Google Scholar 

  • Zieger, B. and K. Mursula, Annual variation in near-Earth solar wind speed: Evidence for persistent north-south asymmetry related to solar magnetic polarity, Geophys. Res. Lett., 25, 6, 841, 1998.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kessel, R.L., Chen, SH. (1999). On the Earth’s Bow Shock Near Solar Minimum. In: Sibeck, D.G., Kudela, K. (eds) Interball in the ISTP Program. NATO Science Series, vol 537. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4487-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4487-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5864-0

  • Online ISBN: 978-94-011-4487-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics