Skip to main content

The Influence of Convection on Magnetotail Variability

  • Chapter

Part of the book series: NATO Science Series ((ASIC,volume 537))

Abstract

This study investigates the evolution of the magnetotail’s magnetic field with the aid of a self-consistent two-dimensional model. In this model the plasma mantle continuously supplies particles to the magnetotail, the ion current periodically updates the magnetic field using the Biot-Savart law. The simulated magnetotail evolves into a quasi-steady state, characterized by the periodic motion of the model’s near-Earth X-line. This variability results from the nonadiabatic acceleration of ions in the current sheet and their rapid loss from the tail. The characteristic time scale of variability in the magnetotail is on the order of 4–5 minutes. We also investigate how the magnetotail’s topology responds to increased convection electric fields, and show examples of observations of variability in the magnetotail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birn, J., and M. Hesse (1991) The substorm current wedge and field-aligned currents in MHD simulations of magnetotail reconnection, J. Geophys. Res., 96, 1611–1618.

    Article  ADS  Google Scholar 

  2. Ogino, T., R. J. Walker, and M. Ashour-Abdalla (1994) A global magnetohydrodynamic simulation of the response of the magnetosphere to a northward turning of the interplanetary magnetic field, J. Geophys. Res., 99, 11,027–11,042.

    Article  ADS  Google Scholar 

  3. Raeder, J., R. J. Walker, and M Ashour-Abdalla (1995) The structure of the distant geomagnetic tail during long periods of northward IMF, Geophys. Res. Lett.,22, 349–352.

    Article  ADS  Google Scholar 

  4. Fedder, J. A., and J. G. Lyon (1995) The Earth’s magnetosphere is 165 R E long: Self consistent currents, convection, magnetospheric structure and processes for northward interplanetary magnetic field, J. Geophys. Res., 100, 3623–3635.

    Article  ADS  Google Scholar 

  5. Hesse, M., D. Winske, M. Kuznetsova, and J. Bim (1996) Hybrid simulations of the formation of thin current sheets in magnetotail configurations, J Geomagn. Geoelec., 48, 749–758.

    Article  Google Scholar 

  6. Pritchett, P. L., and F. V. Coroniti (1996) The role of the drift kink mode in destabilizing thin current sheets, J. Geomagn. Geoelectr., 48, 833–844.

    Article  Google Scholar 

  7. Büchner, J. (1996) Three-dimensional current sheet tearing in the earth’s magnetotail, Adv. Space Res., 18, 267–280.

    Article  ADS  Google Scholar 

  8. Larson, D. J., and R. L. Kaufmann (1996) Structure of the magnetotail current sheet, J. Geophys. Res., 101, 21,447–21,461.

    Article  ADS  Google Scholar 

  9. Kaufmann, R. L., D. J. Larson, I. D. Kontodinas, and B. M. Ball (1997a) Force balance and substorm effects in the magnetotail, J. Geophys. Res., 102, 22,141–22,154.

    Article  ADS  Google Scholar 

  10. Kaufmann, R. L., I. D. Kontodinas, B. M. Ball, and D. J. Larson (1997b) Nonguiding center motion and substorm effects in the magnetotail, J. Geophys. Res., 102, 22,155–22,168.

    Article  ADS  Google Scholar 

  11. Peroomian, V., M. Ashour-Abdalla, and L. M. Zelenyi (1998) Self-consistent simulation of the magnetotail, Substorms-9, edited by S. Kokubun and Y. Kamide, Kluwer Acad. Pub., 165–168.

    Google Scholar 

  12. Ashour-Abdalla, M., J. Berchem, J. Büchner, and L. M. Zelenyi (1993) Shaping of the magnetotail from the mantle: Global and local structuring, J. Geophys. Res., 98, 5651–5676.

    Article  ADS  Google Scholar 

  13. Ashour-Abdalla, M., L. M. Zelenyi, V. Peroomian, and R. L. Richard (1994) Consequences of magnetotail ion dynamics, J. Geophys. Res., 99, 14,891–14,916.

    Article  ADS  Google Scholar 

  14. Ashour-Abdalla, M., L. M. Zelenyi, V. Peroomian, R. L. Richard, and J.M. Bosqued., The mosaic structure of plasma bulk flows in the Earth’s magnetotail, J. Geophys. Res., 100, 19,191–19,209.

    Google Scholar 

  15. Birn, J., R. Sommer, and K. Schindler (1975) Open and closed magnetospheric tail configurations and their stability, Astrophys. Space Sci.,35, 389–400.

    Article  ADS  Google Scholar 

  16. Zwingmann, W. (1983) Self-consistent magnetotail theory: Equilibrium structures including arbitrary variation along the tail axis, J. Geophys. Res., 88, 9101–9108.

    Article  ADS  Google Scholar 

  17. Borovsky, J. E., R. C. Elphic, H. O. Funsten, and M. F. Thomsen (1997) The Earth’s plasma sheet as a laboratory for flow turbulence in high-B MID, J. Plasma Phys., 57, 1–34.

    Article  ADS  Google Scholar 

  18. Sergeev, V. A., and W. Lennartsson (1988) Plasma sheet at X — 20 RE during steady magnetospheric convection, Planet. Space Sci., 36, 353–366.

    Article  ADS  Google Scholar 

  19. Baumjohann, W., G. G. Paschmann, and H. Luhr (1990) Characteristics of highspeed ion flows in the plasma sheet, J Geophys. Res., 95, 3801–3809.

    Article  ADS  Google Scholar 

  20. Angelopoulos, V., C. F. Kennel, F. V. Coroniti, R. Pellat, M. G. Kivelson, R. J. Walker, C. T. Russel, W. Baumjohann, W. C. Feldman, and J. T. Gosling (1994) Statistical characteristics of bursty bulk flows events, J Geophys. Res., 99, 21,257–21280.

    Google Scholar 

  21. Sergeev, V. A., T. I. Pulkkinen, and R. J. Pellinen (1996) Coupled-mode scenario for the magnetospheric dynamics, J. Geophys. Res., 101, 13,047–13,065.

    Article  ADS  Google Scholar 

  22. Stenuit, H., J.-A. Sauvaud, R. Kovrazhkin, L. A. Frank, W. R. Paterson, Impulsive ion injections at the polar edge of the auroral oval from the magnetospheric flanks: Interball-2 observations, EOS,Transactions, American Geophysical Union, F764.

    Google Scholar 

  23. Zesta, E., L. R. Lyons, J. C. Samson (1998) Occurrence of auroral poleward boundary intensifications, EOS, Transactions,American Geophysical Union, F761.

    Google Scholar 

  24. Klimov, S. I., et al. (1997) ASPI Experiment: Measurements of fields and waves on board the Interball-1 mission, Ann. Geophys., 15, 514–527.

    Article  ADS  Google Scholar 

  25. Hesse, M., J. Birn, and D. Winske (1997) On the ion scale structure of thin current sheets in the magnetotail, Phys. Scr., T74, 63–75.

    Article  ADS  Google Scholar 

  26. Hesse, M., J. Bim, and D. Winske (1998) Formation and structure of thin current sheets: Dipolarization, Substorms-4, edited by S. Kokubun and Y. Kamide, Kluwer Acad. Pub., 727–730.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Peroomian, V., Ashour-Abdalla, M., Zelenyi, L.M., Petrukovich, A. (1999). The Influence of Convection on Magnetotail Variability. In: Sibeck, D.G., Kudela, K. (eds) Interball in the ISTP Program. NATO Science Series, vol 537. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4487-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4487-2_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5864-0

  • Online ISBN: 978-94-011-4487-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics