Skip to main content

Aminoacylation of tRNA Induces a Conformational Switch on the 3’-Terminal Ribose

  • Chapter
RNA Biochemistry and Biotechnology

Part of the book series: NATO Science Series ((ASHT,volume 70))

  • 522 Accesses

Abstract

The 3’-terminal adenosine-76 in tRNA is an important recognition element for the interaction of tRNA or aminoacyl-tRNA with proteins and nucleic acids. The aromatic adenine-76 is usually located in a lipophilic binding pocket of the tRNA binding proteins. The ribofuranose ring of nucleosides is not planar and can adopt a C3’-endo-C2’-exo (north sugar, N) or C2’-endo-C3’-exo (south sugar, S) conformation. This sugar pucker defines the position of the nucleobase attached to Cl’ either in the axial or equatorial position. The conformation of the ribose residues in the RNA is determined by the electronic nature of the sugar ring and its substituents as well as by the chemical nature and stacking interactions of the nucleobase. Using a fluorescent analogue of tRNA, tRNA-CCF, we demonstrate, that the aminoacylation of the tRNA results in a conformational change of the 3’-terminal nucleobase. The increase of the fluorescence intensity of formycin in tRNA-CCF1 upon aminoacylation is explained by partial destacking of the 3’-terminal base moiety. Several analogues of anminoacyl-tRNA which were modified on 3’-terminal ribose were tested in their ability to interact with elongation factor Tu.GTP complex. The results indicate that the aminoacylation of the ribose in the tRNA triggers a conformational N⇋S ribose switch which determines the position of adenine-76 for recognition by the elongation factor Tu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antosiewicz, J. and D. Porschke. 1989. Effect of aminoacylation on tRNA conformation. Eur.Biophys.J.17:233–235.

    Article  PubMed  CAS  Google Scholar 

  2. Arnez, J.G. and D. Moras. 1997. Structural and functional considerations of the aminoacylation reaction. Trends.Biochem.Sci. 22:211–216.

    Article  PubMed  CAS  Google Scholar 

  3. Barciszewski, J., M. Sprinzl, and B.F.C. Clark. 1994. Aminoacyl-tRNAs. Diversity before and unity after interaction with EF-Tu:GTP. FEBS Lett. 351:137–139.

    Article  PubMed  CAS  Google Scholar 

  4. Janiak, F., V.A. Dell, J.K. Abrahamson, B.S. Watson, D.L. Miller, and A.E. Johnson. 1990. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu’GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis. Biochem. 29:4268–4277.

    Article  CAS  Google Scholar 

  5. Jardetzky, O. 1963. Proton magnetic resonance of purine and pyrimidine derivatives. X. The conformation of puromycin. J.Am.Chem.Soc. 85:1823–1825.

    Article  Google Scholar 

  6. Limmer, S., H.-P. Hofmann, G. Ott, and M. Sprinzl. 1993. 3’-terminal end (NCCA) of tRNA co-determines the structure and stability of the aminoacyl acceptor stem. Proc.Natl.Acad.Sci.USA 90:6199–6202.

    Article  PubMed  CAS  Google Scholar 

  7. Limmer, S., Vogtherr, M., Nawrot, B., Hillenbrand, R., and Sprinzl, M. 1998. Specific recognition of a minimal model of aminoacylated tRNA by the elongation factor Tu of bacterial protein biosynthesis. 36, 2485–2489.

    Google Scholar 

  8. Maelicke, A., M. Sprinzl, F. von der Haar, T.A. Khwaja, and F. Cramer. 1974. Structural studies on phenylalanine transfer ribonucleic acid from yeast with the spectroscopic label formycin. Eur.J.Biochem.43:617–625.

    Article  PubMed  CAS  Google Scholar 

  9. Nawrot, B., W. Milius, A. Ejchart, S. Limmer, and M. Sprinzl. 1997. The structure of 3’-O-anthraniloyladenosine, an analogue of the 3’-end of aminoacyl-tRNA. Nucleic Acids Res. 25:948–954.

    Article  PubMed  CAS  Google Scholar 

  10. Nissen, P., M. Kjeldgaard, S. Thirup, G. Polekhina, L. Reshetnikova, B.F.C. Clark, and J. Nyborg. 1995. Crystal structure of the ternary complex of Phe-tRNAPhe EF-Tu, and a GTP analog. Science 270:1464–1472.

    Article  PubMed  CAS  Google Scholar 

  11. Ott, G., L. Arnold, and S. Limmer. 1993. Proton NMR studies of manganese ion binding to tRNA-derived acceptor arm duplexes. Nucleic Acids Res. 21:5859–5864.

    Article  PubMed  CAS  Google Scholar 

  12. Petersen, H.U., T. Roll, M. Grunberg-Manago, and B.F.C. Clark. 1979. Specific interaction of initiation factor IF2 of E. coli with formylmethionyl-tRNAFf met Biochem. Biophys. Res. Comm. 91:1068–1074.

    Article  PubMed  CAS  Google Scholar 

  13. Potts, R., M.J. Fournier, and N.C.J. Ford. 1977. Effect of aminoacylation on the conformation of yeast phenylalanine tRNA. Nature 268:563–564.

    Article  CAS  Google Scholar 

  14. Potts, R.O., N.C.J. Ford, and M.J. Fournier. 1981. Changes in the solution structure of yeast phenylalanine transfer ribonucleic acid associated with aminoacylation and magnesium binding. Biochem. 20:1653–1659.

    Article  CAS  Google Scholar 

  15. Rao, S.T. and M. Sundaralingam. 1970. Stereochemistry of nucleic acids and their constituents. XIII. The crystal and molecular structure of 3’-0-acetyladenosine. Conformational analysis of nucleosides and nucleotides with syn glycosidic torsional angle. J.Am. Chem. Soc. 92:4963–4970.

    Article  PubMed  CAS  Google Scholar 

  16. Schmitt, E., S. Blanquet, and Y. Mechulam. 1996. Structure of crystalline Escherichia coli methionyl-tRNAf met formyltransferase: Comparison with glycinamide ribonucleotide formyltransferase. EMBO J. 15:4749–4758.

    PubMed  CAS  Google Scholar 

  17. Schuber, F. and M. Pinck. 1974. On the chemical reactivity of aminoacyl-tRNA ester bond. I - Influence of pH and nature of the acyl group on the rate of hydrolysis. Biochimie 56:383–390.

    Article  PubMed  CAS  Google Scholar 

  18. Sprinzl, M., Horn, C., Brown, M., Ioudotitch, A., and Steinberg, S. Compilation of tRNA sequences and sequences of tRNA genes. Nucl.Acids Res. 26, 148–153. 1998.

    Article  PubMed  CAS  Google Scholar 

  19. Sundaralingam, M. and S.K. Arora. 1972. Crystal structure of the aminoglycosyl antibiotic puromycin dihydrochloride pentahydrate. Models for the terminal 3’aminoacyladenosine moieties of transfer RNA’s and protein-nucleic acid interactions. J.Mol.Biol. 71:49–70.

    Article  PubMed  CAS  Google Scholar 

  20. Taiji, M., S. Yokoyama, and T. Miyazawa. 1983. Transacylation rates of (aminoacyl)adenosine moiety at the 3’-terminus of aminoacyl transfer ribonucleic acid. Biochem. 22:3220–3225.

    Article  CAS  Google Scholar 

  21. Varani, G. and A. Ramos. 1997. Structure of the acceptor stem of Escherichia coli tRNAAla: role of the G3 U70 base pair in synthetase recognition. Nucleic Acids Res. 25:2083–2090.

    Article  PubMed  Google Scholar 

  22. Viani Puglisi, E., J.D. Puglisi, J.R. Williamson, and U.L. RajBhandary. 1994. NMR analysis of tRNA acceptor stem microhelices: Discriminator base change affects tRNA conformation at the 3’ end. Proc.Natl.Acad.Sci. USA 91:11467–11471.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schlosser, A., Blechschmidt, B., Nawrot, B., Sprinzl, M. (1999). Aminoacylation of tRNA Induces a Conformational Switch on the 3’-Terminal Ribose. In: Barciszewski, J., Clark, B.F.C. (eds) RNA Biochemistry and Biotechnology. NATO Science Series, vol 70. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4485-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4485-8_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5862-6

  • Online ISBN: 978-94-011-4485-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics