Skip to main content

Mechanisms of Cadmium Uptake, Translocation and Deposition in Plants

  • Chapter
Cadmium in Soils and Plants

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 85))

Abstract

Cadmium (Cd) is of concern to agriculture because excessive consumption of Cd in contaminated food crops can lead to toxicities in animals, including humans. Toxicity from Cd in foods is rare, but has been observed in elderly, post-menopausal women in subsistence farm families in two countries (Japan and China) (Canadian Network of Toxicology Centres, 1995). Members of these poorly nourished families consumed large quantities of Cd-rich rice (Oryza sativa L.), which was grown locally on soils contaminated with high levels of Cd. Although these toxicity problems arose under very unusual circumstances, some individuals and groups are concerned also about Cd in food at much lower levels. This concern has caused several international organisations to consider regulations to limit the levels of Cd of food crops in international trade that tend to accumulate higher levels of Cd in their edible parts (e.g., durum wheat grain (Triticum durum Desf.), edible flax seeds (Linum usitatissimum L.), peanuts (Arachis hypogaea L.), and sunflower seeds (Helianthus annuus L.)) (Newhook, et al., 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderegg G and Ripperger H 1989 Correlation between metal complex formation and biological activity of nicotianamine analogues. J. Chem. Soc. Chem. Comm. 647–650.

    Google Scholar 

  • Andersen O, Nielsen J B and Nordberg G F 1992 Factors affecting the intestinal uptake of cadmium from the diet. In Cadmium in the human environment: toxicity and carcinogenicity. Eds. G Nordberg, R F M Herber and L Alessio. pp 173–187. Lyon, International Agency for Research on Cancer.

    Google Scholar 

  • Benes I, Schreiber K, Ripperger H and Kircheiss A 1983 Metal complex formation by nicotianamine, a possible phytosiderophore. Experientia 39, 261–262.

    Article  CAS  Google Scholar 

  • Bingham F T, Sposito G and Strong J E 1986 The effect of sulfate on the availability of cadmium. Soil Sci. 141, 172–177.

    Article  CAS  Google Scholar 

  • Bjerre G K and Schierup H H 1985 Influence of waterlogging on availability and uptake of heavy metals by oat grown in different soils. Plant Soil 88, 45–56.

    Article  CAS  Google Scholar 

  • Bramley R G V and Barrow N J 1994 Differences in the cadmium content of some common Western Australian pasture plants grown in a soil amended with cadmium-describing the effects of level of cadmium supply. Fert. Res. 39, 113–122.

    Article  CAS  Google Scholar 

  • Canadian Network of Toxicology Centres 1995 National Workshop on Cadmium Transport into Plants. Workshop Proceedings, June 20–21, 1995, Canada. pp 1–119. Canadian Network of Toxicology Centres, Ottawa, Canada.

    Google Scholar 

  • Candelaria L M, Chang A C and Amrhein C 1995 Measuring cadmium ion activities in sludge-amended soils. Soil Sci. 159, 162–175.

    CAS  Google Scholar 

  • Cataldo D A, Garland T R and Wildung R E 1983 Cadmium uptake kinetics in intact soybean plants. Plant Physiol. 73, 844–848.

    Article  CAS  Google Scholar 

  • Cataldo, D C, McFadden K M, Graland T R and Wildung R E 1988 Organic constituents and complexation of nickel(II), iron(II), cadmium(II), and plutonium(IV) in soybean xylem exudates. Plant Physiol. 86, 734–739.

    Article  CAS  Google Scholar 

  • Chaney R L, Li Y-M, Schneiter A A, Green C E, Miller J F and Hopkins D G 1993 Progress in developing technologies to produce low Cd concentration sunflower kernels. In Proc. 15th Sunflower Research Workshop (Jan. 14–15, 1993, Fargo, ND). pp 80–92. National Sunflower Association, Bismark, ND.

    Google Scholar 

  • Choudhary M, Bailey L D and Grant C A 1994 Effect of zinc on cadmium concentration in the tissue of durum wheat. Can. J. Plant Sci. 74, 549–552.

    Article  CAS  Google Scholar 

  • Cieslinski G, Van Rees K C J, Huang P M, Kozak L M, Rostad H P W and Knott D R 1996 Cadmium uptake and bioaccumulation in selected cultivars of durum wheat and flax as affected by soil type. Plant Soil 182, 115–124.

    Article  CAS  Google Scholar 

  • Clarke J M, Leisle D and Kopytko G L 1997 Inheritance of cadmium concentration in five durum wheat crosses. Crop Sci. 37, 1722–1726.

    Article  Google Scholar 

  • Costa G and Morel J L 1993 Cadmium uptake by Lupinus albus (L.): Cadmium excretion, a possible mechanism of cadmium tolerance. J. Plant Nutr. 16, 1921–1929.

    Article  CAS  Google Scholar 

  • Costa G and Morel J L 1994 Efficiency of H+-ATPase activity on cadmium uptake by four cultivars of lettuce. J. Plant Nutr. 17, 627–637.

    Article  CAS  Google Scholar 

  • Crews H M and Davies B E 1985 Heavy metal uptake from contaminated soils by six varieties of lettuce (Lactuca sativa L.). J. Agric. Sci. Camb. 105, 591–595.

    Article  CAS  Google Scholar 

  • De Silva D M, Askwith C C, Eide D and Kaplan J 1995 The FET3 gene product required for high affinity iron transport in yeast is a cell surface ferroxidase. J. Biol. Chem. 270, 1098–1101.

    Article  Google Scholar 

  • Dix D, Bridgham J, Broderius M and Eide D 1997 Characterization of the FET4 protein of yeast. Evidence for a direct role in the transport of iron. J. Biol. Chem. 272, 11770–11777.

    CAS  Google Scholar 

  • Eide D, Davis-Kaplan S, Jordan I, Sipe D and Kaplan J 1992 Regulation of iron uptake in Saccharomyces cerevisiae. The ferrireductase and Fe(II) transporter are regulated independently. J. Biol. Chem. 267, 20774–20781.

    CAS  Google Scholar 

  • Eriksson J E 1990 A field study on factors influencing Cd levels in soils and in grain of oats and winter wheat. Water Air Soil Pollut. 53, 69–81.

    Article  CAS  Google Scholar 

  • Evans L J and Bolton K A 1995 Cadmium speciation and retention in soils and sediments chemistry. In Proceedings of the National Workshop on Cadmium Transport into Plants, June 20–21, 1995, Ottawa, Canada. pp 72–76. Canadian Network of Toxicology Centres Ottawa, Canada.

    Google Scholar 

  • Florijn P J and Beusichem M L 1993 Uptake and distribution of cadmium in maize inbred lines. Plant Soil 150, 25–32.

    Article  CAS  Google Scholar 

  • Fujimoto T and Uchida Y 1979 Cadmium absorption by rice plants Oryza sativa L. Mode of the absorption. Soil Sci. Plant Nutr. 25, 407–416.

    Article  CAS  Google Scholar 

  • Fujiwara T, Takahashi K, Kawashima I, Horiguchi T, Eiichi A and Chino M 1994 Metallothionein like genes in higher plants. J. Cellular Biochem. Supplement 18 PART A, 93.

    Google Scholar 

  • Grant C A and Bailey L D 1997 Effects of phosphorus and zinc fertiliser management on cadmium accumulation in flaxseed. J. Sci. Food Agric. 73, 307–314.

    Article  CAS  Google Scholar 

  • Grant C A, Bailey L D, Selles F and Buckley W T 1995 Cadmium Accumulation in Crops. In Canadian Network of Toxicology Centres National Workshop on Cadmium Transport into Plants. Workshop Proceedings, June 20–21, 1995. pp 55–71. Ottawa, Canada.

    Google Scholar 

  • Guo Y, George E and Marschner H 1996 Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant Soil 184,195–205.

    Article  CAS  Google Scholar 

  • Guo-Yan L, Marschner H and Guo Y L 1996 Genotypic differences in uptake and translocation of cadmium in bean and maize inbred lines. Z. Pflanzenernähr. Bodenk. 159, 55–60.

    Google Scholar 

  • Guo-Yan T, Marschner H and Guo Y T 1995 Uptake, distribution and binding of cadmium and nickel in different plant species. J. Plant Nutr. 18, 2691–2706.

    Article  Google Scholar 

  • Guo Y L, Schulz R and Marschner H 1995 Genotypic differences in uptake and distribution of cadmium and nickel in plants. Angewandte Botanik 69, 42–48.

    CAS  Google Scholar 

  • Hamon R, Wundke J, McLaughlin M and Naidu R 1997 Availability of zinc and cadmium to different plant species. Aust. J. Soil Res. 35, 1267–1277.

    Article  CAS  Google Scholar 

  • Hart J J, Welch R M, Norvell W A, Sullivan L A and Kochian L V 1998 Characterization of cadmium binding, uptake and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiol. 116, 1413–1420.

    Article  CAS  Google Scholar 

  • Hinesly T D, Alexander D E, Ziegler E L and Barrett G L 1978 Zinc and Cd accumulation by corn inbreds grown on sludge amended soil. Agron. J. 70, 425–428.

    Article  CAS  Google Scholar 

  • Hinkle P M, Shanshala E D, II and Nelson E J 1992 Measurement of intracellular cadmium with fluorescent dyes. Further evidence for the role of calcium channels in cadmium uptake. J. Biol. Chem. 267, 25553–25559.

    CAS  Google Scholar 

  • Hirsch D and Banin A 1990 Cadmium speciation in soil solutions. J. Environ. Qual. 19, 366–372.

    Article  CAS  Google Scholar 

  • Homma Y and Hirata H 1978 Noticeable increase in cadmium absorption by zinc deficient rice plants. Soil Sci. Plant Nutr. 24, 295–298.

    Article  Google Scholar 

  • Homma Y and Hirata H 1984 Kinetics of cadmium and zinc absorption by rice seedling roots. Soil Sci. Plant Nutr. 30, 527–532.

    Article  CAS  Google Scholar 

  • Hsieh H M, Liu W K, Chang A and Huang P C 1996 RNA expression patterns of a type 2 metallothionein-like gene from rice. Plant Mol. Biol. 32, 525–529.

    Article  CAS  Google Scholar 

  • Huang J W, Berti W R and Cunningham S D 1997 Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ. Sci. Technol. 31, 800–805.

    Article  CAS  Google Scholar 

  • Iwai I, Hara T and Sonoda Y 1975 Factors affecting cadmium uptake by the corn plant. Soil Sci. Plant Nutr. 21, 37–46.

    Article  CAS  Google Scholar 

  • Kaplan J and O’Halloran T V 1996 Iron metabolism in eukaryotes: Mars and Venus at it again. Science 271, 1510–1512.

    Article  CAS  Google Scholar 

  • Kawashima I, Kennedy T D, Chino M and Lane B G 1992 Wheat E-c metallothionein genes: Like mammalian zinc metallothionein genes, wheat zinc metallothionein genes are conspicuously expressed during embryogenesis. Eur. J. Biochem. 209, 971–976.

    Article  CAS  Google Scholar 

  • Kochian L V and Lucus W J 1988 Potassium transport in roots. Adv. Bot. Res. 15, 93–178.

    Article  CAS  Google Scholar 

  • Lagerwerff J V and Biersdorf G T 1972 Interaction of zinc with uptake and translocation of cadmium in radish In Trace Substances in Environmental Health’ V. Ed. D D Hemphill. pp 515–522. University of Missouri, Columbia, Missouri.

    Google Scholar 

  • Li C Y, Watkins J A and Glass J 1994 The H+-ATPase from reticulocyte endosomes reconstituted into liposomes acts as an iron transporter. J. Biol. Chem. 269, 10242–10246.

    CAS  Google Scholar 

  • Li Y-M, Chaney R L, Schneiter A A, Miller J F and Elias E M 1997 Screening for low grain cadmium phenotypes in sunflower, durum wheat and flax. Euphytica 94, 23–30.

    Article  CAS  Google Scholar 

  • Lindsay W L 1979 Chemical Equilibria in Soils. John Wiley & Sons, New York. 449 p.

    Google Scholar 

  • McLaughlin M J, Andrew S J, Smart M K and Smolders E 1997a Effect of sulfate complexation in solution on uptake of cadmium by plants. In Fourth International Conference on the Biogeochemistry of Trace Elements, June 23–26, 1997, Berkeley, CA. Eds. I K Iskandar, S E Hardy, A C Chang and G M Pierzynski. pp 121–122. U. S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH.

    Google Scholar 

  • McLaughlin M J, Smolders E, Merckx R and Maes A 1997b Plant uptake of Cd and Zn in chelator-buffered nutrient solution depends on ligand type. In Plant Nutrition for Sustainable Food Production and Environment. Eds. T Ando, K Fujita, T Mae, H Matsumoto, S Mori and J Sekiya. pp 113–118. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • McLaughlin M J, Tiller K G, Beech T A and Smart M K 1994a Increased soil salinity causes elevated cadmium concentrations in field-grown potato tubers. J. Environ. Qual. 23, 1013–1018.

    Article  CAS  Google Scholar 

  • McLaughlin M J, Tiller K G and Smart M K 1997c Speciation of cadmium in soil solution of saline-sodic soils and relationship with cadmium concentrations in potato tubers (Solanum tuberosum L.). Aust. J. Soil Res. 35, 183–198.

    Article  CAS  Google Scholar 

  • McLaughlin M J, Williams C M J, McKay A, Kirkham R, Gunton J, Jackson K J, Thompson R, Dowling B, Partington D, Smart M K and Tiller K G 1994b Effect of cultivar on uptake of cadmium by potato tubers. Aust. J. Agric. Res. 45, 1483–1495.

    Article  CAS  Google Scholar 

  • Meuwly P, Thibault P, Schwan A L and Rauser W E 1995 Three families of thiol peptides are induced by cadmium in maize. Plant J. 7, 391–400.

    Article  CAS  Google Scholar 

  • Mori S, Nishizawa N, Hayashi H, Chino M, Yoshimura E and Ishihara J 1991 Why are young rice plants highly susceptible to iron deficiency? In Iron Nutrition and Interactions in Plants. Eds. Y Chen and Y Hadar. pp175–188. Kluwer Academic Publishing, Dordercht.

    Chapter  Google Scholar 

  • Newhook R, Long G, Meek ME, Liteplo R G, Chan P, Argo J and Dormer W 1994 Cadmium and its compounds: Evaluation of risks to health from environmental exposure in Canada. J. Environ. Sci. Health [C] 12C, 195–217.

    Google Scholar 

  • Nies D H 1995 The cobalt, zinc and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J. Bacteriol. 177, 2707–2712.

    CAS  Google Scholar 

  • Nies D H and Silver S 1989a Metal ion uptake by a plasmid-free metal-sensitive Alcaligenes eutrophus strain. J. Bacteriol. 171, 4073–4075.

    CAS  Google Scholar 

  • Nies D H and Silver S 1989b Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus. J. Bacteriol. 171, 896–900.

    CAS  Google Scholar 

  • Nordberg G F, Kjellström T and Nordberg M 1985 Kinetics and metabolism. In Cadmium and Health: a Toxicological and Epidemiological Appraisal, Vol. 1. Exposure, Dose, and Metabolism. Eds. L Friberg, C-G Elinder, T Kjellstrom and G F Nordberg. pp 103–178. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Oliver D P, Hannam R, Tiller K G, Wilhelm N S, Merry R H and Cozens G D 1994 Heavy metals in the environment. The effects of zinc fertilization on cadmium concentrations in wheat grain. J. Environ. Qual. 23, 705–711.

    Article  CAS  Google Scholar 

  • Oliver D P, Schultz J E, Tiller K G and Merry RH 1993 The effect of crop rotations and tillage practices on cadmium concentration in wheat grain. Aust. J. Agric. Res. 44, 1221–1234.

    Article  Google Scholar 

  • Peterson P J and Alloway B J 1979 Cadmium in soils and vegetation. In The Chemistry, Biochemistry and Biology of Cadmium. Ed. M Webb. pp 45–92. Elsevier/North-Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Rauser W E 1987 Compartmental efflux analysis and removal of extracellular cadmium from roots. Plant Physiol. 85, 62–65.

    Article  CAS  Google Scholar 

  • Rauser W E 1995 Phytochelatins and related peptides-Structure, biosynthesis, and function. Plant Physiol. 109, 1141–1149.

    Article  CAS  Google Scholar 

  • Robinson N J, Tommey A M, Kuske C and Jackson P J 1993 Plant metallothioneins. Biochem. J. 295, 1–10.

    CAS  Google Scholar 

  • Rodecap K D, Tingey D T and Lee E H 1994 Iron nutrition influence on cadmium accumulation by Arabidopsis thaliana (L.) Heynh. J. Environ. Qual. 23, 239–246.

    Article  CAS  Google Scholar 

  • Rojas Cifuentes G A 1998 Effects of zinc fertilization on cadmium accumulation in selected grains. Master of Science Thesis, April 1998, North Dakota State University of Agriculture and Applied Sciences, Fargo, North Dakota.

    Google Scholar 

  • Rutz J M, Liu J, Lyons J A, Goranson J, Armstrong S K, McIntoch M A, Feix J B and Klebba P E 1992 Formation of a gated channel by a ligand-specific transport protein in the bacterial outer membrane. Science 258, 471–475.

    Article  CAS  Google Scholar 

  • Saito Y and Takahashi K 1978 Studies on heavy metal pollution in agricultural land. Part 3. Effect of zinc on cadmium absorption and translocation in rice plants. Bull Shikoku Agric. Exp. Stn. 31, 87–109.

    CAS  Google Scholar 

  • Salt D E and Wagner G J 1993 Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity. J. Biol. Chem. 268, 12297–12302.

    CAS  Google Scholar 

  • Scholz G 1989 Effect of nicotianamine on iron re-mobilization in de-rooted tomato seedlings. Biol. Metals 2, 89–91.

    Article  CAS  Google Scholar 

  • Senden M H M N, Van der Meer A J G M, Verburg T G and Wolterbeek H T 1994 Effects of cadmium on the behaviour of citric acid in isolated tomato xylem cell walls. J. Exp. Bot. 45, 597–606.

    Article  CAS  Google Scholar 

  • Senden M H M N, Van der Meer A J G M, Verburg T G and Wolterbeek H T 1995 Citric acid in tomato plant roots and its effect on cadmium uptake and distribution. Plant Soil 171, 333–339.

    Article  CAS  Google Scholar 

  • Shenker M and Crowley D E 1997 Phytosiderophores do not influence cadmium uptake by wheat plants In Fourth International Conference on the Biogeochemistry of Trace Elements, June 23–26, 1997, Berkeley, CA. Eds. I K Iskandar, S E Hardy, A C Chang and G M Pierzynski. pp 205–206. U S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH.

    Google Scholar 

  • Smolders E and McLaughlin M J 1996a Chloride increases cadmium uptake in Swiss chard in a resin-buffered nutrient solution. Soil Sci. Soc. Am. J. 60, 1443–1447.

    Article  CAS  Google Scholar 

  • Smolders E and McLaughlin M J 1996b Effect of Cl on Cd uptake by Swiss chard in nutrient solutions. Plant Soil 179, 57–64.

    Article  CAS  Google Scholar 

  • Stearman R, Yuan D S, Yamaguchi-Iwai Y, Klausner R D and Dancis A 1996 A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271, 1552–1557.

    Article  CAS  Google Scholar 

  • Taylor K, Albrigo L G and Chase C D 1988 Zinc complexation in the phloem of blight-affected citrus. J. Am. Soc. Hortic. Sci. 113, 407–411.

    CAS  Google Scholar 

  • Turner M A 1997 Effect of cadmium treatment on cadmium and zinc uptake by selected vegetable species. J. Environ. Qual. 2, 118–119.

    Article  Google Scholar 

  • Van Steveninck R F M, Babare A, Fernando D R and Van Steveninck M E 1994 The binding of zinc, but not cadmium, by phytic acid in roots of crop plants. Plant Soil 167, 157–164.

    Article  Google Scholar 

  • Van Steveninck R F M, Van Steveninck M E and Fernando D R 1992 Heavy-metal (Zn, Cd) tolerance in selected clones of duck weed (Lemna minor). Plant Soil 146, 271–280.

    Article  Google Scholar 

  • Van Steveninck R F M, Van Steveninck M E, Wells A J and Fernando D R 1990 Zinc tolerance and the binding of zinc as zinc phytate in Lemna minor. X-ray microanalytical evidence. J. Plant Physiol. 137, 140–146.

    Article  Google Scholar 

  • Von Wirén N, Marschner H and Römheld V 1996 Roots of iron-efficient maize also absorb phytosiderophore-chelated zinc. Plant Physiol. 111, 1119–1125.

    Google Scholar 

  • Vögeli-Lange R and Wagner G J 1990 Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Implication of a transport function for cadmium-binding peptides. Plant Physiol. 92, 1086–1093.

    Article  Google Scholar 

  • Vögeli-Lange R and Wagner G J 1996 Relationship between cadmium, glutathione and cadmium-binding peptides (phytochelatins) in leaves of intact tobacco seedlings. Plant Sci. 114, 11–18.

    Article  Google Scholar 

  • Welch R M 1986 Effects of nutrient deficiencies on seed production and quality. Adv. Plant Nutr. 2, 205–247.

    CAS  Google Scholar 

  • Welch R M 1995 Micronutrient nutrition of plants. Crit. Rev. Plant Sci. 14, 49–82.

    CAS  Google Scholar 

  • Welch R M, Hart J J, Norvell W A, Sullivan L A and Kochian L V 1998 Effects of nutrient solution zinc activity on net uptake, translocation, and root export of cadmium and zinc by separated sections of intact durum wheat (Triticum turgidum L. var durum) seedling roots. Plant Soil. In press.

    Google Scholar 

  • Welch R M, House W A and Van Campen D R 1978 Availability of cadmium from lettuce leaves and cadmium sulfate to rats. Nutr. Rep. Int. 17, 35–42.

    CAS  Google Scholar 

  • White C N and Rivin C J 1995 Characterization and expression of a cDNA encoding a seed-specific metallothionein in maize. Plant Physiol. 108, 831–832.

    Article  CAS  Google Scholar 

  • White M C, Chaney R L and Decker A M 1981 Metal complexation in xylem fluid. III. Electrophoretic evidence. Plant Physiol. 67, 311–315.

    Article  CAS  Google Scholar 

  • Workman S M and Lindsay W L 1990 Estimating divalent cadmium activities measured in arid-zone soils using competitive chelation. Soil Sci. Soc. Am. J. 54, 987–993.

    Article  CAS  Google Scholar 

  • World Health Organization 1992 Cadmium. IPCS Environmental Health Criteria. World Health Organization, Geneva. 134 p.

    Google Scholar 

  • Wu J S, Sung H Y and Juang R H 1995 Transformation of cadmium-binding complexes during cadmium sequestration in fission yeast. Bio. Mol. Biol. Interni. 36, 1169–1175.

    CAS  Google Scholar 

  • Yang X, Baligar V C, Martens D C and Clark R B 1995 Influx, transport, and accumulation of cadmium in plant species grown at different Cd2+ activities. J. Environ. Sci. Health B30, 569–583.

    CAS  Google Scholar 

  • Zhao H and Eide D 1996 The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc. Nat. Acad. Sci. 93, 2454–2458.

    Article  CAS  Google Scholar 

  • Zhou J and Goldsbrough P B 1995 Structure, organization and expression of the metallothionein gene family in Arabidopsis. Mol. Gen. Genet. 248, 318–328.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Welch, R.M., Norvell, W.A. (1999). Mechanisms of Cadmium Uptake, Translocation and Deposition in Plants. In: McLaughlin, M.J., Singh, B.R. (eds) Cadmium in Soils and Plants. Developments in Plant and Soil Sciences, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4473-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4473-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5916-9

  • Online ISBN: 978-94-011-4473-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics