Skip to main content

The Environmental Chemistry of Cadmium

An Overview

  • Chapter
Cadmium in Soils and Plants

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 85))

Abstract

Cadmium (Cd), atomic number 48, is in Group IIb of the Periodic Table of the elements. It is greatest in chemical similarity to the other Group IIb elements, zinc (Zn) and mercury (Hg), with which it is commonly associated in natural geologic settings. The ground state electronic configuration of Cd can be listed in an abbreviated form as [Kr].4d 10.5s 2, where the [Kr] denotes the electronic ground state for krypton, the noble gas preceding Cd in the Periodic Table. The full ground state electron configuration for Cd is depicted graphically in Figure 2.1. Loss of the pair of 5s electrons corresponds to a total ionisation potential of 25.83 ev (Cotton and Wilkinson, 1966) a stable electronic structure of a filled outer d shell (4d 10) and a positive valence of 2. Thus Cd(II) is the most common valence of Cd in aquatic natural environments and virtually the only valence of Cd in aquatic systems (Baes and Mesmer, 1976).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alloway B J 1995 Heavy metals in soils. Blackie Academic & Professional. New York. 368p.

    Book  Google Scholar 

  • Angelone M and Bini C 1992 Trace element concentrations in soils and plants of Western Europe. In Biogeochemistry of Trace Metals. Ed. D C Adriano. pp 19–670. Lewis Publishers, Ann Arbor, MI.

    Google Scholar 

  • Baes C F and Mesmer R E 1976 The Hydrolysis of Cations. Krieger Publishing Company, Malabar, FL. 489 p.

    Google Scholar 

  • Bertsch P M, Hunter D B, Sutton S R, Bajt S and Rivers M L 1994 In situ chemical speciation of uranium in soils and sediments by micro x-ray absorption spectroscopy. Environ. Sci. Technol. 28, 980–984.

    Article  CAS  Google Scholar 

  • Boily J F and Fein J B 1996 Experimental study of cadmium-citrate co-adsorption onto oc-Al2O3. Geochem. Cosmochim. Acta 60, 2929–2938.

    Article  CAS  Google Scholar 

  • Brewers J M, Barry B J and MacGregor D J 1987 Distribution and cycling of cadmium in the environment. In Cadmium in the Aquatic Environment. Eds. J O Nriagu and J B Sprague. pp 1–18. John Wiley, New York.

    Google Scholar 

  • Brown G E Jr. 1990 Spectroscopic studies of chemisorption reaction mechanisms at oxide-water interfaces. In Mineral Water Interface Geochemistry. Eds. M F Hochella and A F White. pp 309–363. Mineralogical Soc. of Am., Washington, D.C.

    Google Scholar 

  • Brown G E Jr. 1995 Molecular Environmental Science: Speciation, Reactivity, and Mobility Of Environmental Contaminants. An Assessment of Research Opportunities and the Need for Synchrotron Radiation Facilities. DOE Workshop Report. Airlie Center, Virginia.

    Google Scholar 

  • Charlet L and Manceau A L 1994 Evidence for the neoformation of clays upon sorption of Co(II) and Ni(II) on silicates. Geochim. Cosmochim. Acta 58, 2577–2582.

    Article  CAS  Google Scholar 

  • Chen X, Wright J V, Conca J L and Peurrung L M 1997 Effects of pH on heavy metal sorption on mineral apatite. Environ. Sci. Technol. 31, 624–631.

    Article  CAS  Google Scholar 

  • Chisholm-Brause C J, Roe A L, Hayes K F, Brown G E Jr., Parks G A and Leckie J O 1990a XANES and EXAFS study of Pb(II) adsorbed on oxides surfaces. Geochim. Cosmochim. Acta 54, 1897–1909.

    Article  CAS  Google Scholar 

  • Chisholm-Brause C J, O’Day P A, Brown G E Jr. and Parks G A 1990b Evidence for multinuclear metal ion complexes at solid/solution interfacs from x-ray absorption spectroscopy. Nature 348, 528–530.

    Article  CAS  Google Scholar 

  • Combes J M, Chisholm-Brause C J, Brown G E Jr., Parks G A, Conradson S D, Eller P G, Triay I R, Hobart D E and Meijer A 1992 EXAFS spectroscopic study of neptunium(V) sorption at the a-FeOOH/water interface. Environ. Sci. Technol. 26, 376–342.

    Article  CAS  Google Scholar 

  • Cotter-Howells J D, Champness P E, Charnock J M and Pattrick R A D 1994 Identification of pyromorphite in mine-waste contaminated soils by ATEM and EXAFS. Europ. J. Soil Sci. 45, 392–402.

    Article  Google Scholar 

  • Cotton F A and Wilkinson G 1966 Advanced Inorganic Chemistry. A Comprehensive Text. 2nd edition. John Wiley Publishers, New York. 1135 p.

    Google Scholar 

  • del Castilho P, Chardon W J and Salomons W 1993 Influence of cattle-manure slurry application on the solubility of cadmium, copper and zinc in a manured acidic, loamy-sand soil. J. Environ. Qual. 22, 689–697.

    Article  Google Scholar 

  • Dent A J, Ramsay J D F and Swanton S W 1992 An EXAFS study of uranyl ion in solution and sorbed onto silica and montmorillonite clays colloids. J. Coll. Interf. Sci. 150, 45–60.

    Article  CAS  Google Scholar 

  • Doner H 1978 Chloride as a factor in the mobilities of Ni(II), Cu(II), and Cd(II) in soil. Soil Sci. Soc. Am. J. 42, 882–885.

    Article  CAS  Google Scholar 

  • Dudka S and Adriano D C 1997 Environmental impacts of metal ore mining and processing: a review. J. Environ. Qual. 26, 590–602.

    Article  CAS  Google Scholar 

  • Elliot J C 1994 Structure and Chemistry of the Apatites and other Calcium Orthophosphates. Elsevier, New York, 389 p.

    Google Scholar 

  • Furey W F, Robbins A H, Clancy L L, Wige D R, Wang B C and Stout C D 1986 Crystal structure of Cd, Zn metallothionein. Science 231, 704–710.

    Article  CAS  Google Scholar 

  • Garrett R G 1994 The distribution of cadmium in A horizon soils in the prairies of Canada and adjoining United States. In Current Research 1994-B. pp 73–82. Geological Survey of Canada.

    Google Scholar 

  • Gavi F, Basta N T and Raun W R 1997 Wheat grain cadmium as affected by long-term fertilisation and soil acidity. J. Environ. Qual. 26, 265–271.

    Article  CAS  Google Scholar 

  • Hayes K F, Roe L A, Brown G E Jr., Hodgson K O, Leckie J O and Parks G A 1987 In situ x-ray absorption spectroscopy study of surface complexes: selenium oxyanions on a-FeOOH. Science 238, 783–786.

    Article  CAS  Google Scholar 

  • Holmgren G G, Meyer M W, Chaney R L and Daniels R B 1993 Cadmium, lead, zinc, copper and nickel in agricultural soils of the United States of America. J. Environ. Qual. 22, 335–348.

    Article  CAS  Google Scholar 

  • Hudson E A, Terminello L J, Viani B E, Reich T, Bucher J J, Shuh D K and Edelstein N M 1994 X-ray absorption studies of uranium sorption on mineral substrates. In 1994 Activity Report. Eds. K C Cantwell and L Dunn. pp 177–176. Stanford Synchrotron Radiation Laboratory, Stanford, CA.

    Google Scholar 

  • Jeanjean J, Vincennt U and Fendorf M 1994 Structural modification of calcuim hydroxyapatite induced by sorption of cadmium ions. J. Solid State Chem. 108, 68–72.

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Dudka S, Chlopecka A and Gawinowska T 1992 Background levels and environmental influences on trace metals in soils in of the temperate humic zone of Europe. In Biogeochemistry of Trace Metals. Ed. D C Adriano. Lewis Publishers, Ann Arbor, MI. 513 p.

    Google Scholar 

  • Krishnamurti G S R, Cieslinski G, Huang P M and Van Rees K C J 1997 Kinetics of cadmium release from soils as influenced by organic acids: implication in cadmium availability. J. Environ. Qual. 26, 271–277.

    Article  CAS  Google Scholar 

  • Lamy I, Bourgeois S and Bemond A 1993 Soil cadmium mobility as a consequence of sewage sludge disposal. J. Environ. Qual. 22, 731–737.

    Article  CAS  Google Scholar 

  • Laperche V, Logan T J, Daddam P and Traina S J 1997 Effect of apatite amendments on plant uptake of Pb from contaminated soil. Environ. Sci. Technol. 31, 2745–2753.

    Article  CAS  Google Scholar 

  • Larive C K, Rogers A, Morton M and Carper W R 1996 113Cd NMR binding studies of Cd-fulvic acid complexes: evidence of fast exchange. Environ. Sci. Technol. 30, 2828–2831.

    Article  CAS  Google Scholar 

  • Laws E A 1993 Aquatic Pollution: An Introductory Text, 2nd edition. John Wiley Publishers, New York. 611 p.

    Google Scholar 

  • Lee J G, Ahner B A and Morel F M M 1996 Export of cadmium phytochelatin by the marine diatom Thalassiosira weissflogii. Environ. Sci. Technol. 30, 1814–1821.

    Article  CAS  Google Scholar 

  • Leenheer J A, Wershaw R L and Reddy M M 1995 Strong-acid carboxyl-group structures in fulvic acid from Suwannee River, Georgia. 1. Minor structures. Environ. Sci. Techol. 29, 393–398.

    Article  CAS  Google Scholar 

  • Lindsay W L 1979 Chemical Equilibria in Soils. John Wiley Publishers, New York. 449 p.

    Google Scholar 

  • Logan T J and Miller R H 1983 Background levels of heavy metals in Ohio farm soils. Ohio Agric. Res. Dev. Center. Res. Bull. 275. Ohio State Univ., Columbus, OH.

    Google Scholar 

  • Ma L Q, Tan F and Harris W G 1997 Concentrations and distributions of eleven metals in Florida soils. J. Environ. Qual. 26, 769–775.

    Article  CAS  Google Scholar 

  • Ma Q Y, Traina S J and Logan T J 1994 Effects of aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb immobilization by hydroxyapatite. Environ. Sci. Technol. 28, 1219–1228.

    Article  CAS  Google Scholar 

  • Ma Q Y, Logan T J and Traina S J 1995 Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environ. Sci. Technol. 29, 1118–1126.

    Article  CAS  Google Scholar 

  • McLaughlin M J, Tiller K G, Naidu R and Stevens D P 1996 Review: the behavior and impact of contaminants in fertilisers. Aust. J. Soil Res. 34, 1–54.

    Article  CAS  Google Scholar 

  • Mermut A R, Jain J C, Song L, Kerrich R, Kozak L and Jana S 1996 Trace element concentrations of selected soils and fertilzers in Saskatchewan, Canada. J. Environ. Qual. 25, 845–853.

    Article  CAS  Google Scholar 

  • Mortvedt J J 1987 Cadmium levels in soils and and plants form long-term fertility experiments in the United States of America. J. Environ. Qual. 16, 137–142.

    Article  CAS  Google Scholar 

  • Mortvedt J J, Mays D A and Osborn G 1981 Uptake by wheat of cadmium and other heavy metal contaminants in phosphate fertilisers. J. Environ. Qual. 10, 193–197.

    Article  CAS  Google Scholar 

  • Myneni S C B, Traina S J, Waychunas G A and Logan T J 1994 Sorption and coprecipitation of arsenate and Chromate in alkaline environments. In 1994 Activity Report. Eds. K C Cantwell and L Dunn. pp 180–183. Stanford Synchrotron Radiation Laboratory, Stanford, CA.

    Google Scholar 

  • Neal R H and Sposito G 1986 Effects of soluble organic matter and sewage sludge amendments on cadmium sorption by soils at low cadmium concentrations. Soil Sci. 142, 164–172.

    Article  CAS  Google Scholar 

  • O’Day P A, Parks G A and Brown G E Jr. 1994a Molecular structure and binding sites of cobalt(II) surface complexes on kaolinte from x-ray absorption spectroscopy. Clays Clay Miner. 42, 337–355.

    Article  Google Scholar 

  • O’Day P A, Brown G E Jr. and Parks G A 1994b X-ray absorption spectroscopy of cobalt(II) multinuclear surface complexes and surface precipitates on kaolinite. J. Coll. Interf. Sci. 165, 269–289.

    Article  Google Scholar 

  • Olesik J 1995 Capillary electrophoresis-ICP spectrometry for rapid elemental speciation. Anal.Chem. 67, 1–12.

    Article  CAS  Google Scholar 

  • Papelis C, Brown G E Jr., Parks G A and Leckie J O 1995 X-ray adsorption spectroscopic studies of cadmium and selenite adsoprtion on aluminum oxides. Langmuir 11, 2041–2048.

    Article  CAS  Google Scholar 

  • Papelis C, Chen C C and Hayes K F 1994 XAS study of metal ion partitioning at the clay-water interface. In 1994 Activity Report. Eds. K C Cantwell and L Dunn. pp 192–196. Stanford Synchrotron Radiation Laboratory, Stanford, CA.

    Google Scholar 

  • Papelis C and Hayes K F 1996 Distinguishing between interlayer and external sorption sites of clay minerals using x-ray absorption spectroscopy. Coll. Surf. A 107, 89–96.

    Article  CAS  Google Scholar 

  • Rasmussen P E 1996 Trace Metals in the Environment: A Geological Perspective. Geological Survey of Canada. Bull 429.

    Google Scholar 

  • Rauser W E 1990 Phytochelatins. Annu. Rev. Biochem. 59, 61–86.

    Article  CAS  Google Scholar 

  • Raven K P and Loeppert R H 1997 Trace element composition of fertilisers and soil amendments. J. Environ. Qual. 26, 551–557.

    Article  CAS  Google Scholar 

  • Robbins A H, McRee D E, Williamson M, Collett S A, Xuong N H, Wang W F, Furey B C and Stout C D 1991 Refined crystal structure of Cd, Zn metallothionein at 2.0 Ã… resolution. J. Mol. Biol. 221, 1269–1293.

    CAS  Google Scholar 

  • Roe L A, Hayes K F, Chisholm C, Brown G E Jr., Hodgson K O, Parks G A and Leckie J O 1990 In situ x-ray absorption study of lead ion surface complexes at the goethite-water interface. Langmuir 7, 367–373.

    Article  Google Scholar 

  • Ross S M 1994 Toxic metals in soil-plant systems. Wiley Interscience, New York.

    Google Scholar 

  • Salt D E, Pickering I J, Prionce R C, Gleba D, Dushenkov S, Smith R D and Raskin I 1997 Metal accumulation by aquacultured seedlings of Indian Mustard. Environ. Sci. Technol. 31, 1636–1644.

    Article  CAS  Google Scholar 

  • Sery A, Manceau A and Neville Greaves G 1996 Chemical state of Cd in apatite phosphate ores as determined by EXAFS spectroscopy. Am. Mineral 81, 864–873.

    CAS  Google Scholar 

  • Spadini L, Manceau A, Schindler A and Charlet P W 1994 Structure and stability of Cd2+ surface complexes on ferric oxides 1. Results of EXAFS spectroscopy. J. Colloid Interface Sci. 168, 73–86.

    Article  CAS  Google Scholar 

  • Sposito G and Page A L 1984 Cycling of metals in the soil environment. In Metal Ions in Biological Systems. Vol. 18. Circulation of Metals in the Environment. Ed. H Siegel. pp 287–332. Marcel Dekker, New York.

    Google Scholar 

  • Sposito G 1981 The Thermodynamics of Soil Solutions. Oxford Univ. Press. New York. 223 p.

    Google Scholar 

  • Sposito G 1984 The Surface Chemistry of Soils. Oxford Univ. Press, New York.

    Google Scholar 

  • Tessier A, Fortin D, Belzile N, DeVitre R R and Leppard G G 1996 Metal sorption to diagenitic iron and manganese oxyhydroxides and associated organic matter: narrowing the gap between field and laboratory measurements. Geochim. Cosmochim. Acta 60, 387–404.

    Article  CAS  Google Scholar 

  • Ure A M and Barrow M L 1982 The elemental constituents of soils. In Environmental Chemistry. Vol. 2. Ed. H J M Bowen. pp 94–205. Royal Soc. Chem., London.

    Chapter  Google Scholar 

  • Waychunas G A, Rea B A, Fuller C C and Davis J A 1993 Surface chemistry of ferrihydrate: Part I. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochem. Cosmochim. Acta 57, 2251–2269.

    Article  CAS  Google Scholar 

  • Waychunas G A, Fuller C C and Davis J A 1994 Sorption of aqueous Zn2+ on ferrihydrite: Observation of the onset of precipitation. In 1994 Activity Report. Eds. K C Cantwell and L Dunn. pp 192–196. Stanford Synchrotron Radiation Laboratory, Stanford, CA.

    Google Scholar 

  • Wolery T J and Daveler S A 1992 EQ6, a computer program for reaction path modeling of aqueous geochemical systems: theoretical manual, user’s guide, and related documentation (version 7) Lawrence Livermore National Laboratory. UCRL-MA-110662PT IV.

    Google Scholar 

  • Xu N 1993 Spectroscopic and solution chemistry studies of cobalt (II) sorption mechanisms at the calcite/water interface. Doctoral thesis, Stanford University, Stanford, CA.

    Google Scholar 

  • Xu Y, Schwartz F W and Traina S J 1994 Sorption of Zn2+ and Cd2+ on hydroxylapatite surfaces. Environ. Sci. Technol. 28, 1472–1480.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Traina, S.J. (1999). The Environmental Chemistry of Cadmium. In: McLaughlin, M.J., Singh, B.R. (eds) Cadmium in Soils and Plants. Developments in Plant and Soil Sciences, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4473-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4473-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5916-9

  • Online ISBN: 978-94-011-4473-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics