Codes and Sequences Over ℤ4 — A Tutorial Overview

  • Tor Helleseth
  • P. Vijay Kumar
Part of the NATO Science Series book series (ASIC, volume 542)


This article provides an elementary overview of quaternary i.e., ℤ4 codes and sequences and assumes very little background. It begins with a discussion of binary m-sequences and uses the excellent autocorrelation properties of these sequences to motivate the study of finite fields. This is followed by a discussion of the family of Gold sequences.


Linear Code Linear Feedback Shift Register Weight Enumerator Galois Ring Quaternary Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barg, A. (1994) On small families of sequences with low periodic correlation, inLecture Notes in Computer Science 781, Springer, Berlin, pp.154–158.Google Scholar
  2. Bortas, S., Hammons, R. Jr. and Kumar, P.V. (1992) 4-phase sequences with near-optimum correlation propertiesIEEE Trans. Inform. Theory 38, 1101–1113.CrossRefGoogle Scholar
  3. Carlitz, L. and Uchiyama, S. (1957) Bounds on exponential sumsDuke Math. J.37–41.Google Scholar
  4. Gold, R. (1968) Maximal recursive sequences with 3-valued recursive cross-correlation functionsIEEE Trans. Inform. Theory 14, 154–156.zbMATHCrossRefGoogle Scholar
  5. Golomb, S.W. (1982)Shift Register SequencesAegean Park Press, San Francisco.Google Scholar
  6. Golomb, S.W. (1999) Construction of signals with favorable correlation properties, this volume.Google Scholar
  7. Hammons, A.R.Jr., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A. and Solé, P. (1994) The Z4-linearity of Kerdock, Preparata, Goethals, and related codesIEEE Trans. Inform. Theory 40, 301–319.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Helleseth, T. and Kumar, P.V. (1996) Pseudonoise sequences, in J.D. Gibson (ed.)Mobile Communications HandbookCRC and IEEE Press.Google Scholar
  9. Helleseth, T. and Kumar, P.V. (1998) Sequences with low correlation, in V.S. Pless and W.C. Huffman (eds.)Handbook of Coding TheoryElsevier.Google Scholar
  10. Helleseth, T., Kumar, P.V. and Shanbhag, A. (1996) Exponential sums over Galois rings and their applications, in S. Cohen and H. Niederreiter (eds.)Finite Fields and their ApplicationsCambridge University Press.Google Scholar
  11. Jungnickel, D. and Pott, A. (1999) Difference sets: an introduction, this volume.Google Scholar
  12. Kerdock, A.M. (1972) A class of low-rate nonlinear binary codesInform. Contr. 20, 182–187.MathSciNetzbMATHCrossRefGoogle Scholar
  13. Kumar, P.V., Helleseth, T. and Calderbank, A.R. (1995) An upper bound for Weil exponential sums over Galois rings and applicationsIEEE Trans. Inform. Theory 41, 456–468.MathSciNetzbMATHCrossRefGoogle Scholar
  14. Kumar, P.V., Helleseth, T., Calderbank, A.R. and Hammons, A.R. Jr. (1996) Large families of quaternary sequences with low correlationIEEE Trans. Inform. Theory 42, 579–592.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Lidl, R. and Niederreiter, H. (1997)Finite-Fields (2nd edition)vol. 20 ofEncyclopedia of Mathematics and its ApplicationsCambridge University Press, Cambridge.Google Scholar
  16. MacDonald, B.R. (1974)Finite Rings with IdentityMarcel Dekker, New York.Google Scholar
  17. MacWilliams, F.J. and Sloane, N.J.A. (1977)The Theory of Error-Correcting CodesNorth-Holland, Amsterdam.Google Scholar
  18. Nechaev, A. (1991) The Kerdock code in a cyclic formDiscrete Math. Appl. 1, 365–384.MathSciNetzbMATHCrossRefGoogle Scholar
  19. Preparata, F.P. (1968) A class of optimum nonlinear double-error correcting codesInform. Contr. 13, 378–400.MathSciNetzbMATHCrossRefGoogle Scholar
  20. Sarwate, D.V. and Pursley, M.B. (1980) Crosscorrelation properties of pseudorandom and related sequencesProc. IEEE 68, 593–619.CrossRefGoogle Scholar
  21. Simon, M.K., Omura, J.K., Scholtz, R.A. and Levitt, B.K. (1994)Spread-Spectrum Communications Handbook.New York: McGraw-Hill.Google Scholar
  22. Shanbhag, A., Kumar, P.V. and Helleseth, T. (1996) Improved binary codes and sequence families from Z4-linear codesIEEE Trans. Inform. Theory 42, 1582–1586.MathSciNetzbMATHCrossRefGoogle Scholar
  23. Solé, P. (1989) A quaternary cyclic code and a family of quadriphase sequences with low correlation properties, inCoding Theory and ApplicationsLecture Notes in Computer Science388Springer, Berlin.Google Scholar
  24. Udaya, P. and Siddiqi, M. (1996) Optimal biphase sequences with large linear complexity derived from sequences overZ4 IEEE Trans. Inform. Theory 42206–216.MathSciNetzbMATHCrossRefGoogle Scholar
  25. Wolfmann, J. (1999) Bent functions and coding theeory, this volume.Google Scholar
  26. Yang, K., Helleseth, T., Kumar, P.V. and Shanbhag, A. (1996) The weight hierarchy of Kerdock codes over Z4IEEE Trans. Inform. Theory 42, 1587–1593.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Tor Helleseth
    • 1
  • P. Vijay Kumar
    • 2
  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.Communication Science Institute Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations