Advertisement

Difference Sets: An Introduction

  • Dieter Jungnickel
  • Alexander Pott
Part of the NATO Science Series book series (ASIC, volume 542)

Abstract

We give an introductury treatment of the theory of difference sets focusing on the abelian case. This is meant to facilitate understanding of some other articles in this volume which will provide a detailed treatment of some important recent developments.

Keywords

Abelian Group Prime Divisor Group Ring Symmetric Design Multiplier Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arasu, K.T. (1987) On Wilbrink’s theorem, J. Comb. Theory (A) 44 156–158.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Arasu, K.T. (1988) Another variation of Wilbrink’s theorem, Ars Comb. 25 107–109.MathSciNetzbMATHGoogle Scholar
  3. Arasu, K.T., Davis, J.A., Jedwab, J. and Sehgal, S. (1993) New constructions of Menon difference sets, J. Comb. Theory (A) 64 329–336.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Arasu, K.T., Davis, J.A., Jungnickel, D. and Pott, A. (1990) A note on intersection numbers of difference sets, European J. Comb. 11 95–98.MathSciNetzbMATHGoogle Scholar
  5. Arasu, K.T. and Pott, A. (1999) Theory of difference sets, in J.G: Webster (ed), Wiley Encyclopedia of Electrical and Electronics Engineering 21 Wiley, New York, pp.682–694Google Scholar
  6. Arasu, K.T. and Ray-Chaudhuri, D.K (1986) Multiplier theorem for a difference list, Ars Comb. 22 119–137.MathSciNetzbMATHGoogle Scholar
  7. Baumert, L.D. (1971) Cyclic Difference Sets,Lecture Notes in Mathematics 182 Springer, Berlin.Google Scholar
  8. Beth, T., Jungnickel, D. and Lenz, H. (1999) Design theory (2nd edition), Cambridge University Press.CrossRefGoogle Scholar
  9. Borevich, Z.I. and Shafarevich, I.R. (1966) Number Theory, Academic Press, New York.Google Scholar
  10. Bruck, R.H. (1955) Difference sets in a finite group, Trans. Amer. Math. Soc. 78 464–481.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Calabro, D. and Wolf, J.K. (1968) On the synthesis of two-dimensional arrays with desirable correlation properties, Inform. Control 11 537–560.CrossRefGoogle Scholar
  12. Chan, W.K., Siu, M.K. and Tong, P. (1979) Two-dimensional binary arrays with good autocorrelation, Inform. Control 42 125–130.MathSciNetzbMATHCrossRefGoogle Scholar
  13. Chen, Y.Q. (1997) On the existence of abelian Hadamard difference sets and a new family of difference sets, Finite Fields Appl. 3 234–256.MathSciNetzbMATHCrossRefGoogle Scholar
  14. Chen, Y.Q. (1998) A construction of difference sets, Designs, Codes and Cryptography 13 247–250.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Colbourn, C.J. and Dinitz, J.H. (1996) The CRC Handbook of combinatorial designs, CRC Press, Boca Raton.zbMATHCrossRefGoogle Scholar
  16. Davis, J.A. and hams, J.E. (1998) Hadamard difference sets in nonabelian 2-groups with high exponent, J. Algebra 199 62–87.MathSciNetzbMATHCrossRefGoogle Scholar
  17. Davis, J.A. and Jedwab, J. (1996) A survey of Hadamard difference setsin K.T. Arasu, J.F. Dillon, K. Harada, S.K. Sehgal and R. Solomon (eds.), Groups, Difference Sets and the Monster, DeGruyter, Berlin-New York, pp.145–156.Google Scholar
  18. Davis, J.A. and Jedwab, J. (1997) A unifying construction of difference setsJ. Combin. Theory A 80 13–78.MathSciNetzbMATHCrossRefGoogle Scholar
  19. Davis, J.A. and Jedwab, J. (1999) A unifying approach to difference sets with gcd(v, n) > 1, this volume.Google Scholar
  20. Davis, J.A. and Smith, K. A construction of difference sets in high exponent 2-groups using representation theory, J. Alg. Comb. 3 137–151.Google Scholar
  21. Dillon, J.F. and Dobbertin, H. (1999) Cyclic difference sets with Singer parameters, manuscript.Google Scholar
  22. Dobbertin, H. (1999) Kasami power functions, permutation polynomials and cyclic difference sets, this volume.Google Scholar
  23. Eliahou, S., Kervaire, M. and Saffari, B. (1990) A new restriction on the length of Golay complementary sequences, J. Comb. Theory (A) 55 45–59.MathSciNetCrossRefGoogle Scholar
  24. Gordon, D.M. (1994) The prime power conjecture is true for n < 2, 000, 000, Electronic J. Comb. 1 R6.Google Scholar
  25. Gordon, B., Mills, W.H. and Welch, L.R. (1962) Some new difference sets, Canadian J. Math. 14 614–625.MathSciNetzbMATHCrossRefGoogle Scholar
  26. Hall, M. (1947) Cyclic projective planes, Duke Math. J. 14 1079–1090.MathSciNetzbMATHCrossRefGoogle Scholar
  27. Hall, M. (1986) Combinatorial Theory (end edition), Wiley, New York.Google Scholar
  28. Iiams, J. (1999) Lander’s tables are complete, this volume.Google Scholar
  29. Ionin, Y.J. (1999) Building symmetric designs with building sets, Designs, Codes and Cryptography, to appear.Google Scholar
  30. Jungnickel, D. (1962) On automorphism groups of divisible designs, Canadian J. Math. 34 257–297.MathSciNetCrossRefGoogle Scholar
  31. Jungnickel, D. (1989) An elementary proof of Wilbrink’s theorem, Arch. Math. 52 615–617.MathSciNetzbMATHCrossRefGoogle Scholar
  32. Jungnickel, D. (1992a) Difference sets, in J.H. Dinitz and D.R. Stinson (eds.), Contemporary design theory: A collection of surveys, Wiley, New York, pp.241–324.Google Scholar
  33. Jungnickel, D. (1992a) On Lander’s multiplier theorem for difference lists, J. Comb. Inf. System Sc. 17 123–129.MathSciNetzbMATHGoogle Scholar
  34. Jungnickel, D. (1993) Finite fields: structure and arithmetics, Bibliographisches Institut, Mannheim.zbMATHGoogle Scholar
  35. Jungnickel, D. and Pott, A. (1988) Two results on difference sets, Coll. Math. Soc. János Bolyai 52 325–330.MathSciNetGoogle Scholar
  36. Jungnickel, D. and Pott, A. (1999) Perfect and almost perfect sequences, Discr. Appl. Math., to appear.Google Scholar
  37. Jungnickel, D. and Schmidt, B. (1997) Difference sets: An update, in J.W.P. Hirschfeld, S.S. Magliveras and M.J. de Resmini (eds.), Geometry, Combinatorial Designs and Related Structures, Cambridge University Press, pp.89–112.Google Scholar
  38. Jungnickel, D. and Schmidt, B. (1998) Difference sets: A second update, Rend. Circ. Mat. Palermo Serie II Suppl. 53 89–118.MathSciNetGoogle Scholar
  39. Jungnickel, D. and Tonchev, V.D. (1999) Decompositions of difference sets, J. Algebra, to appear.Google Scholar
  40. Jungnickel, D. and Vedder, K. (1984) On the geometry of planar difference sets, European J. Comb. 5 143–148.MathSciNetzbMATHGoogle Scholar
  41. Kibler, R.E. (1984) A summary of non-cyclic difference sets, k < 20, J. Combin. Theory (A) 25 162–167.Google Scholar
  42. Kopilovich, L.E. (1988) On perfect binary arrays, Electr. Letters 24 566–567.zbMATHCrossRefGoogle Scholar
  43. Kraemer, R.G. (1993) Proof of a conjecture on Hadamard 2-groups, J. Comb. Theory (A) 63 1–10.MathSciNetzbMATHCrossRefGoogle Scholar
  44. Lander, E.S. (1983) Symmetric Designs: An Algebraic Approach, London Math. Soc. Lect. Notes 75 Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  45. Liebler, R.A. (1999) Constructive Representation Theoretic Methods and non-Abelian Difference Sets, this volume.Google Scholar
  46. Lüke, H.D. (1992) Korrelationssignale, Springer, Berlin-Heidelberg-New York.CrossRefGoogle Scholar
  47. Ma, S.L. (1985) Polynomial addition sets, Ph. D. thesis, University of Hong Kong.Google Scholar
  48. MacWilliams, F.J. and Mann, H.B. (1968) Pseudo-random sequences and arrays, Proc. IEEE 64 1715–1729.CrossRefGoogle Scholar
  49. MacWilliams, F.J. and Sloane, N.J.A. (1976) On the p-rank of the design matrix of a difference set, Information and Control 12 474–488.CrossRefGoogle Scholar
  50. Mann, H.B. (1964) Balanced incomplete block designs and abelian difference sets Illinois J. Math. 8 252–261.MathSciNetzbMATHGoogle Scholar
  51. Mann, H.B. (1965) Addition theorems, Wiley, New York.zbMATHGoogle Scholar
  52. Maschietti, A. (1998) Difference sets and hyperovals, Designs, Codes and Cryptography 14 89–98.MathSciNetzbMATHCrossRefGoogle Scholar
  53. McFarland, R.L. (1970) On multipliers of abelian difference sets, PhD dissertation, OhioGoogle Scholar
  54. State University.Google Scholar
  55. McFarland, R.L. (1973) A family of difference sets in non-cyclic abelian groups, J. Comb. Theory (A) 15 1–10.MathSciNetzbMATHCrossRefGoogle Scholar
  56. McFarland, R.L. and Rice, B.L. (1978) Translates and multipliers of abelian difference sets, Proc. Amer. Math. Soc. 68 375–379.MathSciNetzbMATHCrossRefGoogle Scholar
  57. Menon, P.K. (1960) Difference sets in abelian groups, Proc. Amer. Math. Soc. 11, 368–376.MathSciNetzbMATHCrossRefGoogle Scholar
  58. Moreno, O. (1999) Signal patterns for locating one or multiple targets, this volume. Pott, A. (1988) Applications of the DFT to abelian difference sets, Archiv Math. 51 283–288.Google Scholar
  59. Pott, A. (1989) A note on self-orthogonal codes, Discrete Math. 76 283–284.MathSciNetzbMATHCrossRefGoogle Scholar
  60. Pott, A. (1992) New necessary conditions on the existence of abelian difference sets, Combinatorica 12 89–93.MathSciNetzbMATHCrossRefGoogle Scholar
  61. Pott, A. (1995) Finite Geometry and Character Theory, Lecture Notes in Mathematics 1601 Springer, Berlin.Google Scholar
  62. Pott, A. (1996) A survey on relative difference sets, in K.T. Arasu, J.F. Dillon, K. Harada, S. Sehgal and R. Solomon (eds.), Groups, Difference Sets, and the Monster, Walter de Gruyter, Berlin, pp.195–232.Google Scholar
  63. Schmidt, B. (1999a) Cyclotomic integers and finite geometry, J. Amer. Math. Soc., to appear.Google Scholar
  64. Schmidt, B. (1999b) Cyclotomic integers of prescribed absolute value and the class group, J. Number Th., to appear.Google Scholar
  65. Singer, J. (1938) A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 377–385.MathSciNetCrossRefGoogle Scholar
  66. Storer, T. (1967) Cyclotomy and difference sets, Markham, Chicago.zbMATHGoogle Scholar
  67. Turyn, R.J. (1965) Character sums and difference sets Pacific J. Math. 15, 319–346. MathSciNetzbMATHGoogle Scholar
  68. Turyn, R.J. (1984) A special class of Williamson matrices and difference sets, J. Comb. Theory (A) 36 111–115.MathSciNetzbMATHCrossRefGoogle Scholar
  69. Turyn, R.J. and Storer, J. (1961) On binary sequences, Proc. Amer. Math. Soc. 12 394–399.MathSciNetzbMATHCrossRefGoogle Scholar
  70. Wilbrink, H.A. (1985) A note on planar difference sets, J. Comb. Theory (A) 38 94–95.MathSciNetzbMATHCrossRefGoogle Scholar
  71. Xia, M. (1992) Some infinite classes of special Williamson matrices and difference sets, J. Comb. Theory (A) 61 230–242.zbMATHCrossRefGoogle Scholar
  72. Xiang, Q. (1999) Recent results on difference sets with classical parameters, this volumeGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Dieter Jungnickel
    • 1
  • Alexander Pott
    • 2
  1. 1.Lehrstuhl für Diskrete Mathematik, Optimierung und Operations ResearchUniversität AugsburgAugsburgGermany
  2. 2.Institut für Algebra und GeometrieUniversität MagdeburgMagdeburgGermany

Personalised recommendations