Skip to main content

Analysis of Gene Expression and Mutants Influencing Ethylene Responses and Fruit Development in Tomato

  • Chapter
Book cover Biology and Biotechnology of the Plant Hormone Ethylene II

Abstract

Efforts in numerous laboratories including our own have focused upon the isolation of specific genes which regulate the ripening process and related fruit quality characters. Together these efforts have resulted in the isolation of genes involved in numerous aspects of the ripening phenotype including cell wall metabolism, ethylene biosynthesis and perception, pigment biosynthesis, and susceptibility to post-harvest pathogens. Specific efforts in our laboratory are focused in two general areas. The first is toward isolation and characterization of genes which represent upstream global developmental regulators of ripening such as the ripening-inhibitor (rin) and non-ripening (nor) genes. We are currently characterizing genes which we believe represent both target loci. Our second focus is on analysis of ethylene signal transduction components and analysis of corresponding gene expression and function during the ripening process. We have isolated a putative tomato homologue of the Arabidopsis CTR1 gene and have shown that it is ethylene regulated during tomato fruit development. This represents a second component of ripening-related ethylene signal transduction, in addition to the Never-ripe ethylene receptor, whose mRNA accumulation is itself under ethylene control. In addition, we have shown through genetic mapping that a putative tomato constitutive ethylene response mutant (Epi; Epinastic) does not represent a mutation in the tomato CTR1 gene TCTR1. Epi/Epi; Nr/Nr double-mutant analysis suggests that the Epi mutation represents a step in ethylene responses limited to ethylene-mediated cell size effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hobson, G. and Grierson, D. (1993) Tomato, in G.B. Seymour, J.E. Taylor, G.A. Tucker (eds.) Biochemistry of Fruit Ripening, Chapman and Hall, London pp 405–442.

    Chapter  Google Scholar 

  2. Gray, J.E., Picton, S., Giovannoni, J.J. and Grierson, D. (1994) The use of transgenic and naturally occurring mutants to understand and manipulate tomato fruit ripening. Plant, Cell Environ. 17, 557–571.

    Article  CAS  Google Scholar 

  3. Smith, C., Watson, C., Ray, J., Bird, C., Morris, P., Schuch, W. and Grierson, D. (1988) Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes, Nature 334, 724–726.

    Article  CAS  Google Scholar 

  4. Giovannoni, J., DellaPenna, D., Bennett, A. and Fischer, R. (1989) Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening, Plant Cell 1, 53–63.

    PubMed  CAS  Google Scholar 

  5. Kramer, M., Sanders, R., Sheehy, R., Melis, M., Kuehn, M. and Hiatt, W. (1990) Field evaluation of tomatoes with reduced polygalacturonase by antisense RNA, in A. Bennett, and S. O’Neill, (eds.), Horticultural Biotechnology, Alan R. Liss, pp 347–355.

    Google Scholar 

  6. Fray, R. and Grierson, D. (1993) Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation, and co-suppression, Plant Mol. Biol. 22, 589–602.

    Article  PubMed  CAS  Google Scholar 

  7. Oeller, P.W., Wong, L.M., Taylor, L.P., Pike, D.A. and Theologis, A. (1991) Reversible inhibition of tomato fruit senescence by antisense 1-aminocyclopropane-1-carboxylate synthase, Science 254, 427–439.

    Article  Google Scholar 

  8. Hamilton, A., Lycett, G. and Grierson, D. (1990) Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants, Nature 346, 284–287.

    Article  CAS  Google Scholar 

  9. Wilkinson, J., Lanahan, M., Yen, H., Giovannoni, J. and Klee, H. (1995) An ethylene-inducible component of signal transduction encoded by Never-ripe, Science 270, 1807–1809.

    Article  PubMed  CAS  Google Scholar 

  10. Yen, H., Shelton, A., Howard, L. Vrebalov, J. and Giovannoni, J. (1997) The tomato high pigment (hp) locus maps to chromosome 2 and influences plastome copy number and fruit quality, Theor. Applied Gen. 95, 1069–1079.

    Article  CAS  Google Scholar 

  11. Theologis, A., Oeller, P., Wong, L., Rothmann, W. and Gantz, D. (1993) Use of a tomato mutant constructed with reverse genetics to study fruit ripening, a complex developmental process, Dev. Gen. 14, 282–359.

    Article  CAS  Google Scholar 

  12. Giovannoni, J., Noensie, E., Ruezinsky, D., Lu, X., Tracy, S., Ganal, M., Martin, G., Pillen, K. and Tanksley, S. (1995) Molecular genetic analysis of the ripening-inhibitor and non-ripening loci of tomato: a first step in genetic map-based cloning of fruit ripening genes, Mol. Gen. Gen. 248, 195–206.

    Article  CAS  Google Scholar 

  13. Rick, C. (1980) Tomato linkage survey, Rep. Tomato Genet. Coop. 30, 2–17.

    Google Scholar 

  14. Penarrubia, D., Aguilar, M., Margossian, L. and Fischer, R. (1992) An antisense gene stimulates ethylene hormone production during tomato fruit ripening, Plant Cell 4, 681–687.

    PubMed  CAS  Google Scholar 

  15. Theologis, A. (1992) One rotten apple spoils the whole bushel: the role of ethylene in fruit ripening, Cell 70, 181–184.

    Article  PubMed  CAS  Google Scholar 

  16. Yen, H., Lee, S., Tanksley, S., Lanahan, M, Klee, H. and Giovannoni, J. (1995) The tomato Never-ripe locus regulates ethylene-inducible gene expression and is linked to a homologue of the Arabidopsis ETR1 gene, Plant Physiol. 107, 1343–1353.

    Article  PubMed  CAS  Google Scholar 

  17. Trentmann, S. and Kende, H. (1995) Analysis of Arabidopsis cDNA that shows homology to the tomato E8 cDNA, Plant Mol. Biol. 29, 161–166

    Article  PubMed  CAS  Google Scholar 

  18. Lanahan, M.B., Yen, H.C., Giovannoni, J.J. and Klee, H.J. (1994) The Never Ripe mutation blocks ethylene perception in tomato, Plant Cell 6, 521–530.

    PubMed  CAS  Google Scholar 

  19. Koshland, D. (1995) The two-component pathway comes to eukaryotes, Science 262, 532.

    Article  Google Scholar 

  20. Bleeker, A., Estelle, M., Somerville, C. and Kende, H. (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana, Science 241, 1086–1089.

    Article  Google Scholar 

  21. Schaller, G. and Bleeker, A. (1995) Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene, Science 270, 1809–1811.

    Article  PubMed  CAS  Google Scholar 

  22. Wilkinson, J., Lanahan, M, Clark, D., Bleeker, A., Chang, C., Meyerowitz, E. and Klee, H. (1997) A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants, Nature Biotech. 15, 444–447

    Article  CAS  Google Scholar 

  23. Fujino, D., Burger, D. and Bradford, K. (1989) Ineffectiveness of ethylene biosynthetic and action inhibitors in phenotypically reverting the Epinastic mutant of tomato (Lycopersicon esculentum Mill.), J. Plant Growth Reg. 8, 53–61.

    Article  CAS  Google Scholar 

  24. Ecker, J.R. (1995) The ethylene signal transduction pathway in plants, Science 268, 667–675.

    Article  PubMed  CAS  Google Scholar 

  25. Kieber, J., Rothenberg, M, Roman, G., Feldman, K. and Ecker, J. (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases, Cell 72, 427–441.

    Article  PubMed  CAS  Google Scholar 

  26. Ursin, V. (1987) Morphogenetic and physiological analyses of two developmental mutants of tomato, Epinastic and diageotropica, Ph.D. Dissertation, University of California, Davis.

    Google Scholar 

  27. Tigchelaar, E.C., McGlasson, W.B. and Buescher, R.W. (1978) Genetic regulation of tomato fruit ripening, HortScience 13, 508–513

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Giovannoni, J., Fox, E., Kannan, P., Lee, S., Padmanabhan, V., Vrebalov, J. (1999). Analysis of Gene Expression and Mutants Influencing Ethylene Responses and Fruit Development in Tomato. In: Kanellis, A.K., Chang, C., Klee, H., Bleecker, A.B., Pech, J.C., Grierson, D. (eds) Biology and Biotechnology of the Plant Hormone Ethylene II. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4453-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4453-7_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5910-7

  • Online ISBN: 978-94-011-4453-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics