Phylogeny of Alariaceae (Phaeophyta) with special reference to Undaria based on sequences of the RuBisCo spacer region

  • Hwan Su Yoon
  • Sung Min BooEmail author
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 137)


In order to investigate the phylogenetic relationships of the family Alariaceae, we determined the complete sequences of the plastid RuBisCo spacer region for fourteen taxa of the Alariaceae and for two reference species. The RuBisCo spacer sequences showed that the Alariaceae forms two clades: one comprises Alaria, Pterygophora and Undaria, while the other comprises Ecklonia, Eckloniopsis, Eisenia, Egregia and Laminaria. These results favour the narrow concept of the Alariaceae, in which Alaria, Pterygophora and Undaria only may be placed. Ecklonia, Eckloniopsis, Eisenia, Egregia and Laminaria appear not to have a common ancestor. The RuBisCo spacer sequences of the three Undaria species also indicate that the species are very closely related, with an intermediate relationship at the DNA level; we hypothesize that there might be a reticulate evolution among the species. In this scenario, U. undarioides might be an ancient hybrid species from the parental species of U. peterseniana and U. pinnatifida. The RuBisCo spacer region, including its flanking areas, is useful for inferring phylogenetic relationships within the family Alariaceae.

Key words

Alariaceae gene tree Phaeophyta phylogeny RuBisCo spacer Undaria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bold, H. C. & M. J. Wynne, 1985. Introduction to the Algae. 2nd. edn. Prentice-Hall, Inc., N.J.Google Scholar
  2. Bolton, J. J. & R. J. Anderson, 1994. Ecklonia. In Akatsuka, I. (ed.), Biology of Economic Algae. SPB Academic Publlishing, The Hague: 385–406.Google Scholar
  3. Brodie, J., P. K. Hayes, G. L. Barker & L. M. Irvine, 1996. Molecular and morphological characters distinguishing two Por-phyra species (Rhodophyta: Bangiophycidae). Eur. J. Phycol. 31: 303–308.CrossRefGoogle Scholar
  4. Chihara, M., 1997. Biology of Algal Diversity. Uchida Rokakuho Publ. Co. Ltd, Tokyo, 386 pp.Google Scholar
  5. Destombe, C. & S. E. Douglas, 1991. Rubisco spacer sequence divergence in the rhodophyte alga Gracilaria verrucosa and closely related species. Curr. Genet. 19: 395–398.PubMedCrossRefGoogle Scholar
  6. Druehl, L. D., 1989. Molecular evolution in the Laminariales: A review. In Garbary D.J. & G.R. South (eds), Evolutionary Biogeography of the Marine Algae of the North Atlantic. NATO ASI series Vol. G22, Springer-Verlag. Berlin: 205–217.Google Scholar
  7. Druehl, L. D. & G. W. Saunders, 1992. Molecular explorations in kelp evolution. In Round F.E. & D.J. Chapman (eds), Progress in Phycological Research Vol. 8. Elsevier, Amsterdam: 47–83.Google Scholar
  8. Druehl, L. D., C. Mayes, I. H. Tan & G. W. Saunders, 1997. Molecular and morphological phytogenies of kelp and associated brown algae. In Bhattacharya, D. (ed.), Origins of Algae and their Plastids. Springer, Wien: 221–235.CrossRefGoogle Scholar
  9. Estes, J. A. & P. D. Steinberg, 1988. Predation, herbivory and kelp evolution. Paleobiology 14: 19–36.Google Scholar
  10. Felsenstein, J., 1985. Confidence limits on phytogenies: An approach using the bootstrap. Evolution 39: 783–791.CrossRefGoogle Scholar
  11. Felsenstein, J., 1993. PHYLIP (Phylogenetic Inference Package) Version 3.572. Department of Genetics, University of Washington, Seattle.Google Scholar
  12. Gilbert, D., 1995. SeqPup, a biological sequence editor and analysis program for Macintosh computers. Published electronically on the Internet available via anonymous ftp to Scholar
  13. Goff, L. J., D. A. Moon & A. W Coleman, 1994. Molecular delineation of species and species relationships in red algal agaro-phytes Gracilariopsis and Gracilaria (Gracilariales). J. Phycol. 30:521–537.CrossRefGoogle Scholar
  14. Hillis, D. M. & J. P. Huelsenbeck, 1992. Signal, noise and reliability in molecular phylogenetic analyses. J. Hered. 83: 189–195.PubMedGoogle Scholar
  15. Kang, J. W., 1966. On the geographical distribution of marine algae in Korea. Bull. Pusan Fish. Coll. 7: 1–125.Google Scholar
  16. Kawashima, S., 1993. Illustrated book of Japanese kelp. Revised version, North Japanese Ocean Publ. Sapporo, 206 pp.Google Scholar
  17. Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J. mol. Evol. 16: 111–120.PubMedCrossRefGoogle Scholar
  18. Migita, S., 1967. Studies on artificial hybrids between Undaria peterseniana (Kjellman) Okam. and U. pinnatifida (Harv.) Sur. Bull. Fac. Fish., Nagasaki Univ. 24: 9–20.Google Scholar
  19. Miyabe, K., 1957. On the Laminariaceae of Hokkaido. J. Sapporo agri. Coll. 1: 1–50.Google Scholar
  20. Morgan, D. R., 1997. Decay analysis of large sets of phylogenetic data. Taxon 46: 509–517.CrossRefGoogle Scholar
  21. Nishibayashi, T. & S. Inoh, 1960. Morphological studies in Lam-inariales. V. The formation of zoospores in Undaria undarioides (Yendo) Okamura. Biol. J. Okayama Univ. 6: 83–90.Google Scholar
  22. Okamura, K., 1916. Undaria and its species. Bot. Mag. Tokyo 29: 266–278.Google Scholar
  23. Okamura, K., 1936. Nippon Kaiso-shi. Uchida-rokakuho, Tokyo (in Japanese).Google Scholar
  24. Papenfuss, G. F., 1951. Phaeophyta. In Smith, G. M. (ed.), Manual of Phycology. Chronica Botanica, Waltham, Mass.: 119–158.Google Scholar
  25. Saito, Y., 1972. On the effects of enviromental factors on morphological characteristics of Undaria pinnatifida and the breeding of hybrids in the genus Undaria. In Abbott A. & M. Kurogi (eds), Contribution to the Systematics of the Benthic Marine Algae of the North Pacific. Jap. Soc. Phycol. Kobe: 117–132.Google Scholar
  26. Saunders, G. W. & L. D. Druehl, 1992. Nucleotide sequences of the small-subunit ribosomal RNA genes from selected Lamin-ariales (Phaeophyta): implications for kelp evolution. J. Phycol. 28: 544–549.CrossRefGoogle Scholar
  27. Saunders, G. W. & L. D. Druehl, 1993a. Revision of the kelp family Alariaceae and the taxonomic affinities of Lessoniopsis Reinke (Laminariales,Phaeophyta). Hydrobiologia 260/261: 689–697.CrossRefGoogle Scholar
  28. Saunders, G. W. & L. D. Druehl, 1993b. Nucleotide sequences of the internal transcribed spacers and 5.8S rRNA genes from Alaria marginata and Postelsia palmaeformis (Phaeophyta: Lamin-ariales). Mar. Biol. 115: 347–352.CrossRefGoogle Scholar
  29. Setchell, W. A. & N. L. Gardner, 1925. The marine algae of the Pacific coast of North Amarica. Part III. Melanophyceae. Univ. Calif. Publ. Bot. 8: 383–898.Google Scholar
  30. Stache-Crain, B., D. G. Muller & L. J. Goff, 1997. Molecular systematics of Ectocarpus and Kuckuckia (Ectocarpales, Phae-ophyceae) inferred from phylogentic analysis of nuclear-and plastid-encoded DNA sequences. J. Phycol. 33: 152–168.CrossRefGoogle Scholar
  31. Swofford, D. L., 1993. PAUP: Phylogenetic Analysis Using Parsimony. Version 3.1.1, Illinois Natural History Survey, Champaign.Google Scholar
  32. Tan, I. H. & L. D. Druehl, 1996. A ribosomal DNA phylogeny supports the close evolutionary relationships among Sporochnales, Desmarestiales and Laminariales (Phaeophyceae). J. Phycol. 32: 112–118.CrossRefGoogle Scholar
  33. van Oppen, M. J. H., S. G. A. Draisma & J. L. Olsen, 1995. Multiple trans-Arctic passages in the red alga Phycodrys rubens: evidence from nuclear rDNA ITS sequences. Mar. Biol. 123: 179–188.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  1. 1.Department of BiologyChungnam National UniversityDaejonKorea

Personalised recommendations