Advertisement

Development of the extant diversity in Halimeda is linked to vicariant events

  • Wiebe H. C. F. Kooistra
  • Magnolia Calderón
  • Llewellya W. HillisEmail author
Conference paper
  • 424 Downloads
Part of the Developments in Hydrobiology book series (DIHY, volume 137)

Abstract

Partial 18S rDNA sequences, including a 102 base pair insertion, were used to infer a phylogeny among 48 samples across all sections in Halimeda Lamouroux, 1812. The phylogeny reveals a separation of the monophyletic section Rhipsalis into a western Atlantic and a western Pacific clade. Consequently, morphologically similar species within this section such as H. monile (Ellis & Solander) Lamouroux (western Atlantic), and H. cylindracea Decaisne (western Pacific), are not sister taxa. Vicariant events that separated the tropical regions of the Atlantic and IndoPacific Oceans can explain the observed biogeographical pattern in section Rhipsalis.

Key words

18S rDNA biogeography Bryopsidales evolution Halimeda phylogeny Tethys vicariance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barton, E. S., 1901. The Genus Halimeda. Monograph LX of: Uitkomsten op zoologisch, botanisch, oceanographisch en geologisch Gebied verzameld in Nederlandsch Oost-Indie 1899–1900 aan boord H. M. Siboga onder commando van Luitenant ter zee le kl. G. F. Tydeman, uitgegeven door Dr. Max Weber, Prof. in Amsterdam, Leider der Expeditie. E. J. Brill, Publishers and Printers, Leiden: 32 pp. + 4 pls.Google Scholar
  2. Borowitzka, M. A. & A. W. D. Larkum, 1976a. Calcification in the green alga Halimeda. II. The exchange of Ca2+ and the occurrence of age gradients in calcification and photosynthesis. J. exp. Bot. 27: 864–878.CrossRefGoogle Scholar
  3. Borowitzka, M. A. & A. W. D. Larkum, 1976b. Calcification in the green alga Halimeda. III. The source of inorganic carbon for photosynthesis and calcification and a model of the mechanism of calcification. J. exp. Bot. 27: 879–893.CrossRefGoogle Scholar
  4. Borowitzka, M. A. & A. W. D. Larkum, 1977. Calcification in the green alga Halimeda. I. An ultrastructure study of thallus development. J. Phycol. 13: 6–16.Google Scholar
  5. Bremer, K., 1988. The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795–803.CrossRefGoogle Scholar
  6. Coates, A. G., J. B. C. Jackson, L. Collins, T. M. Cronin, H. J. Dowsett, L. M. Bybell, P. Jung & J. A. Obando, 1992. Closure of the Isthmus of Panama: the near-shore marine record of Costa Rica and Western Panama. Geol. Soc. Am. Bull. 104: 814–828.CrossRefGoogle Scholar
  7. Dragastan, O., D. K. Richter, K. Barbel, P. Mihai, S. Anca & C. Ion, 1997. A new family of Paleo-Mesozoic calcareous green siphons-algae (order Bryopsidales, class Bryopsidophyceae, phylum Siphonophyta). Rev. Esp. Micropaleontol. 29: 69–135.Google Scholar
  8. Drew, E. A., 1993. Halimeda biomass, growth rates and sediment generation on reefs in the central Great Barrier Reef province. Coral Reefs. 2: 101–110.CrossRefGoogle Scholar
  9. Elliott, G. F., 1960. Fossil calcareous algal floras of the Middle East with a note on a Cretaceous problematicum, Hensonella cylindrica gen. et sp. nov. Quarterly J. geol. Soc. Lond. 115: 217–232.CrossRefGoogle Scholar
  10. Elliott, G. F., 1965. The interrelationships of some Cretaceous Codiaceae (calcareous algae). Paleontology 8: 199–203.Google Scholar
  11. Elliott, G. F., 1980/81. The Tethyan dispersal of some Chloro-phyte algae subsequent to the Paleozoic. Paleogeogr. Paleoclim. Paleoecol. 32: 341–352.CrossRefGoogle Scholar
  12. Elliott, G. E, 1982. A new calcareous green alga from the middle Jurassic of England: its relationships and evolutionary position. Paleontology 25: 431–437.Google Scholar
  13. Flügel, E., 1988. Halimeda: paleontological record and palaeoen-vironmental significance. Coral Reefs 6: 123–130.CrossRefGoogle Scholar
  14. Hendy, M. D. & D. Penny, 1989. A framework for the quantitative study of evolutionary trees. Syst. Zool. 38: 297–309.CrossRefGoogle Scholar
  15. Hillis, D. M. & J. P. Huelsenbeck, 1992. Signal, noise, and reliability in molecular phylogenetic analyses. J. Heredity 83: 189–195.Google Scholar
  16. Hillis, L., 1991. Recent calcified Halimedaceae. In Riding, R. (ed.), Calcareous Algae and Stromatolites. Springer Verlag, Berlin, Heidelberg, New York: 167–188.CrossRefGoogle Scholar
  17. Hillis, L. 1997. Coralgal reefs from a calcareous green alga perspective, and a first carbonate budget. Proc. 8th Int. Coral Reef Sym. 1:761–766.Google Scholar
  18. Hillis, L. W, J. A. Engman & W. H. C. F. Kooistra, 1998. Morphological and molecular phylogenies of Halimeda (Chlorophyta, Bryopsidales) identify three evolutionary lineages. J. Phycol. 34: 669–681.CrossRefGoogle Scholar
  19. Hillis-Colinvaux, L., 1980. Ecology and taxonomy of Halimeda: primary producer of coral reefs. Adv. mar. Biol. 17:1–327.CrossRefGoogle Scholar
  20. Hillis-Colinvaux, L., 1984. Systematics of the Siphonales. In Irvine D. E. G. & D. M. John (eds), Systematics of the Green Algae. Systematics Ass., Special Vol. 27, Academic Press, London & Orlando: 271–296.Google Scholar
  21. Johnson, J. H., 1969. A Review of the Lower Cretaceous Algae. Professional Contribution Colorado School of Mines, No. 6, Colorado School of Mines, Golden, Colorado, 180 pp.Google Scholar
  22. Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J. mol. Evol. 16: 111–120.PubMedCrossRefGoogle Scholar
  23. Lamouroux, J. V. E, 1812. Extrait d’un mémoire sur la classification des polypes coralligènes non entièrement pierreux. Nouv. Bull. Sci. Soc. Philom. 3: 181–8.Google Scholar
  24. Maddison, W. P. & D. R. Maddison, 1992. MacClade: Analysis of Phylogeny and Character Evolution, Version 3. Sinauer Associates Inc., Sunderland, Massachusetts, 398 pp.Google Scholar
  25. Milliman, J. D., 1974. Recent sedimentary carbonates, part I: Marine biocarbonates. Springer Verlag, NY, 378 pp.CrossRefGoogle Scholar
  26. Olsen, J. L., W. T. Stam, S. Berger & D. Menzel, 1994. 18S rDNA and evolution in the Dasycladales (Chlorophyta): modem living fossils. J. Phycol. 30: 730–744.CrossRefGoogle Scholar
  27. Peters, A. F., M. J. H. van Oppen, C. Wiencke, W. T. Stam. amp; J. L. Olsen, 1997. Phylogeny and historical ecology of the Desmares-tiaceae (Phaeophyceae) support a southern hemisphere origin. J. Phycol. 33: 294–309.CrossRefGoogle Scholar
  28. Rambaud, A., 1995. Se-Al, Sequence alignment program vldi. Department of Zoology, University of Oxford. (an-drew.rambaud@zoology.ox.ac.uk)Google Scholar
  29. Rögl, F. & F. F. Steininger, 1984. Neogene Paratethys, Mediterranean and Indo-Pacific seaways. Implications for the paleo-biogeography of marine and terestrial biotas. In Brenchley P. J. (ed.), Fossils and Climate, John Wiley & Sons, Chichester: 171–200.Google Scholar
  30. van de Peer, Y., J. M. Neefs, P. De Rijk & R. De Wachter, 1993. Reconstructing evolution from eukaryotic small-subunit RNA sequences: calibration of the molecular clock. J. mol. Evol. 37: 221–332.PubMedCrossRefGoogle Scholar
  31. Wilbur, K. M., L. Hillis-Colinvaux & N. Watabe, 1969. Electron microscope study of calcification in the alga Halimeda (order Siphonales). Phycologia 8: 27–35.CrossRefGoogle Scholar
  32. Zechman, F. W., E. C. Theriot, E. A. Zimmer & R. L. Chapman, 1990. Phylogeny of the Ulvophyceae (Chlorophyta): cladistic analysis of nuclear encoded rRNA sequence data. J. Phycol. 26: 700–710.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Wiebe H. C. F. Kooistra
    • 1
  • Magnolia Calderón
    • 1
  • Llewellya W. Hillis
    • 1
    Email author
  1. 1.Smithsonian Tropical Research InstituteUSA

Personalised recommendations