Advertisement

Relationship of CO2 concentrations to photosynthesis of intertidal macroalgae during emersion

  • Kunshan Gao
  • Yan Ji
  • Yusho Aruga
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 137)

Abstract

In order to assess the ecological impacts of the atmospheric CO2 increase on the intertidal macroalgae during emersion, the photosynthesis of Enteromorpha linza (a green alga), Ishige okamurae (a brown alga) and Gloiopeltis furcata (a red alga) was investigated in air as a function of CO2 concentrations and water loss. Their photosynthesis was not saturated at the present atmospheric CO2 level (350 μl 1 −1 or 15.6 μM), the CO2 compensation point and K [mCO2] increased with increasing desiccation, showing that desiccation lowers the CO2 affinity of the intertidal macroalgae. It was concluded that E. linza, I. okamurae and G. furcata, while exposed to air, can benefit from atmospheric CO2 rise, especially when the algae have lost some water.

Key words

CO2 emersion macroalgae photosynthesis seaweeds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beer, S. & E. Koch, 1996. Photosynthesis of marine macroalgae and seagrasses in globally changing CO2 environments. Mar. Ecol. Prog. Ser. 141: 199–204.CrossRefGoogle Scholar
  2. Beer, S. & B. Schragge, 1987. Photosynthetic carbon metabolism in Enteromorpha compressa (Chlorophyta). J. Phycol. 23: 580–584.CrossRefGoogle Scholar
  3. Bidwell, R. G. S. & J. McLachlan, 1985. Carbon nutrition of seaweeds: photosynthesis, photorespiration and respiration. J. exp. mar. Biol. Ecol. 97: 287–294.Google Scholar
  4. Bowes, G., 1993. Facing the inevitable: plants and increasing atmospheric CO2. Annu. Rev. Plant Physiol. Plant mol. Biol. 44: 309–332.CrossRefGoogle Scholar
  5. Brinkhuis, B. H., N. R. Tempel & R F. Jones, 1976. Photosynthesis and respiration of exposed salt-marsh fucoids. Mar. Biol. 34: 349–359.CrossRefGoogle Scholar
  6. Charpy-Roubaud, C. & A. Sournia, 1990. The comparative estimation of phytoplanktonic, microphytobenthic and macrophyto-benthic primary production in the oceans. Mar. Microb. Food Webs 4: 31–57.Google Scholar
  7. Gao, K. & Y. Aruga, 1987. Preliminary studies on the photosynthesis and respiration of Porphyra yezoensis under emersed conditions. J. Tokyo Univ. Fish. 47: 51–65.Google Scholar
  8. Gao, K. & K. McKinley, 1994. Use of macroalgae for marine bio-mass production and CO2 remediation: a review. J. appl. Phycol. 6: 45–60.CrossRefGoogle Scholar
  9. Gao, K., Y. Aruga, K. Asada & M. Kiyohara, 1993a. Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis. J. appl. Phycol. 5: 563–571.CrossRefGoogle Scholar
  10. Gao, K., Y. Aruga, K. Asada & M. Kiyohara, 1993b. Calcification in the articulated coralline alga Corallina pilulifera, with special reference to the effect of elevated atmospheric CO2. Mar. Biol. 117:129–132.CrossRefGoogle Scholar
  11. Gao, K., Y. Aruga, K. Asada, T. Ishihara, T. Akano & M. Kiyohara, 1991. Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations. J. appl. Phycol. 3: 355–362.Google Scholar
  12. Gattuso, J. P., C. E. Payri, M. Pichon, B. Delesalle & M. Frankignoulle, 1997. Primary production, calcification, and air-sea CO2 fluxes of a macroalgal-dominated coral reef community (Moorea, French Polynesia). J. Phycol. 33: 729–738.CrossRefGoogle Scholar
  13. Hein, M. & K. Sand-Jensen, 1997. CO2 increases oceanic primary production. Nature 388: 526–527.CrossRefGoogle Scholar
  14. Johnson, W. S., A. Gison, S. L. Gulmon and H A. Mooney, 1974. Comparative photosynthetic capacities of intertidal algae under exposed and submerged conditions. Ecology 55: 450–453.CrossRefGoogle Scholar
  15. Johnston, A. M. & J. A. Raven, 1986. The analysis of photosynthesis in air and water in Ascophyllum nodosum (L.) Le Jolis. Oecologia 69: 288–295.CrossRefGoogle Scholar
  16. Larsson, C., L. Axelsson, H. Ryberg & S. Beer, 1997. Photosynthetic carbon utilization by Enteromorpha intestinalis (Chlorophyta) from a Swedish rockpool. Eur. J. Phycol. 32: 49–54.CrossRefGoogle Scholar
  17. Lignell, A. & M. Pedersén, 1989. Effects of pH and inorganic carbon concentration on growth of Gracilaria secundata. Br. phycol. J. 24: 83–89.CrossRefGoogle Scholar
  18. Maberly, S. C., J. A. Raven & A. M. Johnston, 1992. Discrimination between 12C and 13C by marine plants. Oecologia 91: 481–492.CrossRefGoogle Scholar
  19. Madsen, T. V. & S. C. Maberly, 1990. A comparison of air and water as environments for photosynthesis by the intertidal alga Fucus spiralis (Phaeophyta). J. Phycol. 26: 24–30.CrossRefGoogle Scholar
  20. Oates, B. R., 1985. Photosynthesis and amelioration of desiccation in the intertidal saccate alga Colpomenia peregrina. Mar. Biol. 89: 109–119.CrossRefGoogle Scholar
  21. Oates, B. R., 1986. Components of photosynthesis in the intertidal saccate alga Halosaccion americanum (Rhodophyta, Palmariales). J. Phycol. 22: 217–223.Google Scholar
  22. Oates, B. R. & S. N. Murray, 1983. Photosynthesis, dark respiration and desiccation resistance of the intertidal seaweeds Hespero-phycus harveyanus and Pelvetia fastigiata f. gracilis. J. Phycol. 19: 371–380.CrossRefGoogle Scholar
  23. Quadir, A., P. J. Harrison & R. E. DeWreede, 1979. The effects of emergence and submergence on the photosynthesis and respiration of marine macrophytes. Phycologia 18: 83–88.CrossRefGoogle Scholar
  24. Raven, J. A., 1997. Inorganic carbon aquisition by marine auto-trauphs. Adv. bot. Res. 27: 85–209.CrossRefGoogle Scholar
  25. Raven, J. A. & A. M. Johnston, 1991. Photosynthetic inorganic carbon acquisition by Prasiola stipitata (Prasiales, Chlorophyta) under emersed and submersed conditions: relationship to the taxonomy of Prasiola. Br. Phycol. J. 26: 24–25.Google Scholar
  26. Riebesell, U., D. A. Wolf-Gladrow & V. Smetacek, 1993. Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361: 249–251.CrossRefGoogle Scholar
  27. Surif, M. B. & J. A. Raven, 1990. Photosynthetic gas exchange under emersed conditions in eulittoral and normally submerged members of the Fucales and Laminariales: interpretation in relation to C isotope ratio and N and water use efficiency. Oecologia 82: 68–80.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Kunshan Gao
    • 1
    • 2
  • Yan Ji
    • 1
    • 2
  • Yusho Aruga
    • 3
  1. 1.Marine Biology InstituteShantou UniversityShantou, GuangdongChina
  2. 2.Institute of HydrobiologyThe Chinese Academy of ScienceWuhan, HubeiChina
  3. 3.Tokyo University of FisheriesMinato-ku, TokyoJapan

Personalised recommendations