Effects of environmental factors and plant growth regulators on growth of the red alga Gracilaria vermiculophylla from Shikoku Island, Japan

  • Nair S. Yokoya
  • Hirotaka KakitaEmail author
  • Hideki Obika
  • Takao Kitamura
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 137)


Growth and tolerance of Gracilaria vermiculophylla (Ohmi) Papenfuss from Shikoku Island were investigated under a variation of temperature (5–30 °C), salinity (5–60‱), and photon irradiance (20–100 μmol photons m−2 s−1) in unialgal culture. G. vermiculophylla showed wide tolerances for all factors tested, characterizing a euryhaline and eurythermal species. Two clones, one of a tetrasporophyte and the other of a female gametophyte, showed different growth rates, attributable to the difference either in phase or in genotype. The optimum temperature for the growth of the tetrasporophyte clone was 15–25 °C while that of the gametophyte clone was 20–30 °C. Maximum growth of both phases was observed at 80–100 μmol m−2 s−1. G. vermiculophylla presented higher growth rates in low salinities (15–30‱). Tissue cultures were established in solid ASP 12-NTA medium supplemented with plant growth regulators (PGR), 0.5% agar, 1.0% sucrose and 0.5% inositol. Effects of two auxins (indole-3-acetic acid (IAA), and 2,4-dichlorophenoxyacetic acid (2,4-D)), and one cytokinin (6-benzylaminopurine (BA)) were tested in concentrations ranging from 0.1 to 10.0 mg l−1. Growth of apical segments was significantly stimulated by the majority of treatments supplemented with PGR, while maximum growth of calluses was observed in treatments with low concentration of auxins or BA (1.0 mg l−1). All treatments supplemented with PGR significantly promoted the growth of intercalary segments, except for IAA (1.0 mg 1−1) in combination with BA (1.0 mg 1−1). Growth of calluses originating from intercalary segments was observed in treatments with IAA (0.1 mg 1−1 ), 2,4-D (10.0 mg 1−1) or IAA (1.0 mg l−1) in combination with BA (0.1 mg 1−1). Treatments with high concentration of IAA and BA (10.0 mg 1−1) were lethal for apical and intercalary segments. These results show that auxin and cytokinin play a regulatory role on the growth of G. vermiculophylla in tissue culture. Furthermore, results on the effects of temperature, salinity and irradiance indicate that G. vermiculophylla could be cultivated in brackish temperate environments with potential for economic purposes and for pollution management.

Key words

Gracilaria growth irradiance plant growth regulators salinity temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguirre-Lipperheide, M., F. J. Estrada-Rodrigues & L.V. Evans, 1995. Facts, problems, and needs in seaweed tissue culture: an appraisal. J. Phycol. 31: 677–688.CrossRefGoogle Scholar
  2. Beer, S. & I. Levy, 1983. Effects of photon fluence rate and light spectrum composition on growth, photosynthesis and pigment relations in Gracilaria sp. J. Phycol. 19: 516–522.CrossRefGoogle Scholar
  3. Bird, C. J. & J. McLachlan, 1986. The effect of salinity on distribution of species of Gracilaria Grev. (Rhodophyta, Gigartinales): an experimental assessment. Bot. mar. 29: 231–238.Google Scholar
  4. Bird, N. L., L. C. M. Chen & J. McLachlan, 1979. Effects of temperature, light and salinity on growth in culture of Chondrus crispus, Furcellaria lumbricalis, Gracilaria tikvahiae (Gigartinales, Rhodophyta) and Fucus serratus (Fucales, Phaeophyta). Bot. mar. 22: 521–527.CrossRefGoogle Scholar
  5. Bradley, P. M. & D. P. Cheney, 1990. Some effects of plant growth regulators on tissue culture of the marine red alga Agardhiella subulata (Gigartinales, Rhodophyta). Hydrobiologia 204/205: 353–360.CrossRefGoogle Scholar
  6. Brinkhuis, B. H., 1985. Growth patterns and rates. In Littler, M. M. & D. S. Littler (eds), Handbook of Phycological Methods — Ecological Field Methods: Macroalgae. Cambridge University Press, Cambridge, 461–477.Google Scholar
  7. Chen, L. C. M. & A. R. A. Taylor, 1978. Medullary tissue culture of the red alga Chondrus crispus. Can. J. Bot. 56: 883–886.CrossRefGoogle Scholar
  8. Chirapart, A., M. Ohno, M. Sawamura & H. Kusunose, 1994. Effect of temperature on growth rate and agar quality of a new member of Japanese Gracilaria in Tosa Bay, southern Japan. Jap. J. Phycol. (Sôrui) 42: 325–329.Google Scholar
  9. Dawes, C. J., 1971. Indole-acetic acid in the green algal coenocyte Caulerpa prolifera (Chlorophyceae, Siphonales). Phycologia 10: 375–379.CrossRefGoogle Scholar
  10. Dawes, C. J. & E. W. Koch, 1991. Branch, micropropagule and tissue culture of the red algae Eucheuma denticulatum and Kappaphycus alvarezii farmed in the Philippines. J. appl. Phycol. 3: 247–257.CrossRefGoogle Scholar
  11. Dawes, C. J., G. C. Trono & A. O. Lhuisma, 1993. Clonal propagation of Eucheuma denticulatum and Kappaphycus alvarezii for Philippine seaweed farms. Hydrobiologia 260/261: 379–384.CrossRefGoogle Scholar
  12. Edwards, P., 1970. Illustrated guide to the seaweeds and seagrasses in the vicinity of Porto Aransas Texas. Contr. mar. Sc. Univ. Texas, Austin, 15: 1–228 (suppl.).Google Scholar
  13. Evans, M. L., 1984. Function of hormones at the cellular level of organisation. In: Scott, T. K. (ed.), Encyclopedia of Plant Physiology, Springer-Verlag, Berlin: 23–80.Google Scholar
  14. Gessner, F., 1970. Temperature. Plants. In: Kinne, O. (ed.), Marine Ecology. Wiley-Interscience, London: 363–406.Google Scholar
  15. Gessner, F. & W. Schramm, 1971. Salinity. Plants. In: Kinne, O. (ed.), Marine Ecology. Wiley-Interscience, London: 705–820.Google Scholar
  16. Gusev, M. V., A. H. Tambiev, N. N. Kikova, N. N. Shelyastina & R. R. Aslanyan, 1987. Callus formation in seven species of agarophyte marine algae. Mar. Biol. 95: 593–597.CrossRefGoogle Scholar
  17. Haglund, K. & M. Pedersén, 1992. Growth of the red alga Gracilaria tenuistipitata at high pH. Influence of some environmental factors and correlation to an increased carbonic-anhydrase activity. Bot. mar. 35: 579–587.CrossRefGoogle Scholar
  18. Huang, W. & Y. Fujita, 1997. Callus induction and thallus regeneration in some species of red algae. Phycol. Res. 45: 105–111.CrossRefGoogle Scholar
  19. Iwasaki, H., 1961. The life cycle of Porphyra tenera in vitro. Biol. Bull. 121: 173–187.CrossRefGoogle Scholar
  20. Jacobs, W. P., 1970. Developmental and regeneration of the algal giant coenocyte, Caulerpa. In: Fredrik, J. F. & R. M. Klein (eds), Phylogenesis and Morphogenesis in the Algae. Ann. N. Y. Acad. Sci. 175: 732–747.Google Scholar
  21. Kaczyna, F. & R. Megnet, 1993. The effects of glycerol and plant growth regulators on Graciiaria verrucosa (Gigartinales, Rhodophyceae). Hydrobiologia 268: 57–64.CrossRefGoogle Scholar
  22. Laing, W. A., J. T. Christeller & B. E. Terzaghi, 1989. The effect of temperature, photon flux density and nitrogen on growth of Gracilaria sordida Nelson (Rhodophyta). Bot. mar. 32: 439–445.CrossRefGoogle Scholar
  23. Lapointe, B. E., 1981. The effects of light and nitrogen on growth, pigment content and biochemical composition of Gracilaria fo-liifera v. angustissima (Gigartinales, Rhodophyta). J. Phycol. 17: 90–95.CrossRefGoogle Scholar
  24. Lapointe, B. E., K. R. Tenure & C. J. Dawes, 1984. Interactions between light and temperature on the physiological ecology of Gracilaria tikvahiae (Gigartinales: Rhodophyta). Mar. Biol. 80: 161–170.CrossRefGoogle Scholar
  25. Liu, X. W. & B. Kloareg, 1991. Tissue culture of Porphyra umbilicalis (Bangiales, Rhodophyta). I. The effects of plant hormones on callus induction from tissue explants. C. R. Acad. Sci. Paris. Ser. 312:517–522.Google Scholar
  26. Lobban, C. S. & P. J. Harrison, 1994. Seaweed Ecology and Physiology. Cambridge University Press, Cambridge, 366 pp.CrossRefGoogle Scholar
  27. Liming, K., 1981. Light. In: Lobban, C. S. & M. J. Wynne (eds), The Biology of Seaweeds. Blackwell Scientific Publications, Oxford: 326–355.Google Scholar
  28. McLachlan, J. & C. L. Bird, 1984. Geographical and experimental assessment of the distribution of Gracilaria species (Rhodophyta, Gigartinales) in relation to temperature. Helgoländer. Meeresunters. 38: 319–334.CrossRefGoogle Scholar
  29. Muñoz, M. A., H. Romo & K. Alveal, 1984. Efecto de la salinidade en el crecimiento de tetrasporofitos juveniles de Gracilaria verrucosa (Hudson) Papenfuss (Rhodophyta, Gigartinales). Gayana 41:119–125.Google Scholar
  30. Orosco, C. A. & M. Olmo, 1992. Growth rates of Gracilaria species (Gracilariales, Rhodophyta) from Tosa Bay, southern Japan. Jap. J. Phycol. (Sôrui) 40: 239–244.Google Scholar
  31. Pome-Fuller, M. & A. Gibor, 1987. Calluses and callus-like growth in seaweeds: induction and culture. Hydrobiologia 151/152: 131–138.CrossRefGoogle Scholar
  32. Santelices, F. & E. Fonck, 1979. Ecologia y cultivo de Gracilaria lemanaeformis. In Santelices, B. (ed.), Actas I Symp. Algas Mar. Chilenas. Subsecretaria de Pesca, Ministerio de Economia, fomento y Reconstrucción: 165–200.Google Scholar
  33. Stevens, D. R. & S. Purton, 1997. Genetic engineering of eukaryotic algae: progress and prospects. J. Phycol. 33: 713–722.CrossRefGoogle Scholar
  34. Tokuda, H., M. Ohno & H. Ogawa, 1986. The Resources and Cultivation of Seaweeds. Monographs on Aquaculture Science, 354 pp. (in Japanese).Google Scholar
  35. van den Hoek, C., 1982. The distribution of benthic marine algae in relation to the temperature regulation of their life histories. Biol. J.Linn. Soc. 18:81–144.CrossRefGoogle Scholar
  36. Winer, B. J. 1971. Statistical Principles in Experimental Design. 2nd edn. MacGraw-Hill, New York.Google Scholar
  37. Yamamoto, H., 1984. An evaluation of some vegetative features and some interesting problems in Japanese population of Gracilaria. Hydrobiologia 116/117: 51–54.CrossRefGoogle Scholar
  38. Yeoman, M. M. & E. Forche, 1980. Cell proliferation and growth in callus cultures. In: Vasil I. K. (ed.), Perspectives on Plant Cell and Tissue Culture. Academic Press, New York: 1–24.Google Scholar
  39. Yokoya, N. S., 1996. Controle do crescimento e da morfogênese por auxinas e citocininas em três espécies de rodofíceas: Gracil-ariopsis tenuifrons, Grateloupia dichotoma e Solieria filiformis. PhD thesis, São Paulo University, São Paulo, 202 pp.Google Scholar
  40. Yokoya, N. S. & W. Handro, 1996. Effects of auxins and cy-tokinins on tissue culture of Grateloupia dichotoma (Gigartinales, Rhodophyta). Hydrobiologia 326/327: 393–400.CrossRefGoogle Scholar
  41. Yokoya, N. S. & W. Handro, 1997. Thallus regeneration and growth induced by plant growth regulators and light intensity in Grateloupia dichotoma (Rhodophyta). In Kitamura, T. (ed.), Proceedings of I.T.I.T. International Symposium on New Technologies from Marine-Sphere, Takamatsu: 83–86.Google Scholar
  42. Yokoya, N. S. & E. C. Oliveira, 1992a. Temperature responses of economically important red algae and their potential for mariculture in Brazilian waters. J. appl. Phycol. 4: 339–345.CrossRefGoogle Scholar
  43. Yokoya, N. S. & E. C. Oliveira, 1992b. Effects of salinity on the growth rate, morphology and water content of some Brazilian red algae of economic importance. Cienc. mar. 18: 49–64.Google Scholar
  44. Yokoya, N. S., S. M. P. B. Guimarães & W. Handro, 1993. Development of callus-like structures and plant regeneration in thallus segments of Grateloupia filiformis Kützing (Rhodophyta). Hydrobiologia 260/261: 407–413.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Nair S. Yokoya
    • 1
  • Hirotaka Kakita
    • 1
    Email author
  • Hideki Obika
    • 1
  • Takao Kitamura
    • 1
  1. 1.Marine Resources DepartmentShikoku National Industrial Research InstituteHayashi, Takamatsu, KagawaJapan

Personalised recommendations