Advertisement

The effect of light on growth and agar content of Gelidium pulchellum (Gelidiaceae, Rhodophyta) in culture

  • Isabel Sousa-Pinto
  • Erminio Murano
  • Susana Coelho
  • Ana Felga
  • Rui Pereira
Conference paper
  • 421 Downloads
Part of the Developments in Hydrobiology book series (DIHY, volume 137)

Abstract

Investigation of light conditions suitable for cultivation of Gelidium pulchellum (Turner) Kurtz was performed under controlled laboratory conditions at 20 °C and in the range of irradiance of 10–430 μmol photons m−2 s−1. Growth, measured as fresh weight increment, increased with irradiance up to 130 μmol m−2 s−1 and no significant photoinhibition was observed up to 430 μmol m−2 s−1. Maximum growth rate (10.0% day−1) was obtained at 130–240 μmol m−2 s−1 under continuous light and aeration. The effect of irradiance on agar yield and quality was assessed. Agar yield varied from 31 to 38.6% of the algal dry weight, and variation was not related to irradiance. However, the yield of agar molecules soluble at 95 °C increased with increasing irradiance. A similar trend was found for sulphate content in both series of extracts, at 95 and 121 °C. On the contrary, the molecular weight and the degree of methylation of agar molecules in the 95 °C extracts decreased with increasing light intensity. As a consequence of the variations in sulphate content, molecular weight and molecular weight distribution, the gel strength was considerably lower at high light intensity. Starch content varied from 0.9 to 7.7% of the algal dry weight, and apparently was not related with irradiance.

Key words

agar cultivation Gelidium pulchellum light molecular weight Rhodophyta sulphate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armisén, R., 1995. World-wide use and importance of Gracilaria. J. appl. Phycol. 7: 231–243.CrossRefGoogle Scholar
  2. Armisén, R. & F. Galatas, 1987. Production, properties and uses of agar. In McHugh, D.J. (ed.), Production and Utilisation of Products from Commercial Seaweeds. FAO Fish. Tech. Pap. 288: 1–57.Google Scholar
  3. Asare, S. O., 1980. Seasonal changes in sulphate and 3, 6-anhydrogalactose content in phycocolloids from two red algae. Bot. mar. 23: 595–598.Google Scholar
  4. Beck, E. & P. Ziegler, 1989. Biosynthesis and degradation of starch in higher plants. Ann. Rev. P. Physiol. Plant Mol. Biol. 40: 95–117.CrossRefGoogle Scholar
  5. Bird, K. T., 1988. Agar production and quality from Gracilaria sp. strain G-16: Effects of environmental factors. Bot. mar. 31: 33–39.CrossRefGoogle Scholar
  6. Bird, K. T., M. D. Hanisak & J. Ryther, 1981. Chemical quality and production of agar extracted from Gracilaria tikvahiae grown in different nitrogen enrichment conditions. Bot. mar. 24: 441–444.CrossRefGoogle Scholar
  7. Bird, K. T., K. Pendoley & F. Koehn, 1989. Variabilty in agar gel behaviour and chemistry as affected by algal growth under different environmental conditions. In Crescenzi, V., I. C. M. Dea, S. Paoletti, S. S. Stivala & I. W. Sutherland (eds), Biomedical and Biotechnological Advances in Industrial Polysaccharides. Gordon & Breach Science Publishers, New York: 365–374.Google Scholar
  8. Chiles, T. C., K. T. Bird & F E. Koehn, 1989. Influence of nitrogen availability on agar-polysaccharides from Gracilaria verrucosa strain G-16: structural analysis by NMR spectroscopy. J. appl. Phycol. 1: 53–58.CrossRefGoogle Scholar
  9. Christeller, J. T. & W. A. Laing, 1989. The effect of environment on the agar yield and gel characteristics of Gracilaria sordida Nelson (Rodophyta). Bot. mar. 32: 447–455.CrossRefGoogle Scholar
  10. Cote, G. L. & M. D. Hanisak, 1986. Production and properties of native agars from Gracilaria tikvahiae and other red algae. Bot. mar. 29: 359–366.CrossRefGoogle Scholar
  11. Craigie, J. S., 1990. Cell walls. In Cole, K.M. & R.G. Sheath (eds), Biology of the Red Algae, Cambridge University Press, Cambridge: 221–257.Google Scholar
  12. Craigie J. S. & A. Jurgens, 1989. Structure of agars from Gracilaria tikvahiae Rhodophyta: location of 4-O-methyl-L-galactose and sulphate. Carbohydr. Polymers 11: 265–278.CrossRefGoogle Scholar
  13. Craigie, J. S., J. McLachlan & R. D. Tocher, 1967. Some neutral constituent of Rhodophyceae with special reference to the occurrence of the floridosides. Can. J. Bot. 46: 605–611.CrossRefGoogle Scholar
  14. Dea, C. M. & D. A. Rees, 1987. Affinity interaction between agarose and β-l,4-glycans: a model for polysaccharides associations in algal cell walls. Carbohydr. Polymers 7: 183–224.CrossRefGoogle Scholar
  15. Ekman, P. & M. Pedersén, 1990. The influence of photon irradiance, day length, dark treatment, temperature, and growth rate on the agar composition of Gracilaria sordida W. Nelson and Gracilaria verrucosa (Hudson) Papenfuss (Gigartinales, Rhodophyta). Bot. mar. 33: 483–495.Google Scholar
  16. Fei, X. G. & L. J. Huang, 1991. General principles of on-shore cultivation of seaweeds: effects of light on reproduction. Hydro-biologia 221: 125–135.Google Scholar
  17. Fredriksen, S. & J. Rueness, 1989. Culture studies of Gelidium latifolium (Grev.) Born, et Thur. (Rhodophyta) from Norway. Growth and nitrogen storage in response to varying photon flux density, temperature and nitrogen availability. Bot. mar. 32: 539–546.Google Scholar
  18. Fredriksen, S., J. M. Rico & J. Rueness, 1993. Comparison of Gelidium latifolium (Grev.) Born. et Thur. (Gelidiales, Rhodophyta) isolates from Spain and Norway. J. appl. Phycol. 5: 117–12.CrossRefGoogle Scholar
  19. Friedlander, M. & I. Levy, 1995. Cultivation of Gracilaria in outdoor tanks and ponds. J. appl. Phycol. 7: 315–324.CrossRefGoogle Scholar
  20. Friedlander, M., R. Shalev, T. Ganor, S. Strimling, A. Ben-Amotz, H. Klar & Y. Wax, 1987. Seasonal fluctuations of growth rate and chemical composition of Gracilaria cf. confería in outdoor culture in Israel. Hydrobiologia 151/152: 501–507.CrossRefGoogle Scholar
  21. Hemmingson J. A., R. H. Furneaux & V. H. Murray-Brown, 1996. Biosynthesis of agar polysaccharides in Gracilaria chilensis Bird, McLachlan et Oliveira. Carbohydr. Res. 287: 101–115.CrossRefGoogle Scholar
  22. Izumi, K., 1973. Structural analysis of agar-type polysaccharides by NMR spectroscopy. Biochim. Biophys. Acta 320: 311–317.PubMedCrossRefGoogle Scholar
  23. Ji, M., M. Lahaye & W. Yaphe, 1988. Structural studies on agar fractions extracted sequentially from Chinese red seaweeds: Gracilaria sjeostedtii, G. textorii and G. salicornia using 13C-NMR and IR spectroscopy. Chin. J. Oceanol. Limnol. 6: 87–103.CrossRefGoogle Scholar
  24. Knutsen, S. H. & H. Grasdalen, 1987. Characterisation of water-soluble polysaccharides from norwegian Furcellaria lumbricalis (Huds.) Lamour. (Gigartinales, Rhodophyceae) by IR and NMR spectroscopy. Bot mar. 30: 497–505.CrossRefGoogle Scholar
  25. Knutsen, S. H., E. Murano, M. D’Amato, R. Toffanin, R. Rizzo & S. Paoletti, 1995. Modified procedure for extraction and analysis of carrageenan applied to the red alga Hypnea musciformis. J. appl. Phycol. 7: 565–576.CrossRefGoogle Scholar
  26. Lahaye, M. & W. Yaphe, 1988. Effects of seasons on the chemical structure and gel strength of Gracilaria pseudoverrucosa agar (Gracilariaceae, Rhodophyta). Carbohydr. Polymers 8: 285–301.CrossRefGoogle Scholar
  27. Lahaye, M., C. Rochas & W. Yaphe, 1985. 13C NMR analysis of sulphated and desulphated agar type polysaccharides. Carbohydr. Res. 143: 240–245.CrossRefGoogle Scholar
  28. Lahaye, M., G Rochas & W. Yaphe, 1986. A new procedure for determining the heterogeneity of agar polymers in the cell walls of Gracilaria spp. (Gracilariaceae, Rhodophyta). Can. J. Bot. 64: 579–585.CrossRefGoogle Scholar
  29. Lahaye, M., J. F. Revol, C. Rochas, J. McLachlan & W. Yaphe, 1988. The chemical structure of Gracilaria crassissima (P. et H. Crouan in Schramm et Mazé) P. et H. Crouan in Schramm et Mazé and G. tikvahiae McLachlan (Gigartinales, Rhodophyta) cell-wall polysaccharides. Bot. mar. 31: 491–501.CrossRefGoogle Scholar
  30. Lewis, R. & D. Hanisak, 1996. Effects of phosphate and nitrate supply on productivity, agar content and properties of Gracilaria strain G-16S. J. appl. Phycol. 8:41–49.CrossRefGoogle Scholar
  31. Macler, B.A., 1986. Regulation of carbon flow by nitrogen and light in the red alga Gelidium coulteri. Plant Physiol. 82: 136–141.PubMedCrossRefGoogle Scholar
  32. Macler, B. A. & J. A. West, 1987. Life history and physiology of the red alga Gelidium coulteri, in unialgal culture. Aquaculture 61:281–293.CrossRefGoogle Scholar
  33. Macler, B. A. & J. R. Zupan, 1991. Physiological basis for the cultivation of the Gelidiaceae. Hydrobiologia 221: 83–90.CrossRefGoogle Scholar
  34. Martinsen, A., Skjåk-Bræk, G., Smisdrød O., Zanetti, F. & S. Paoletti, 1991. Comparison of different methods for determination of molecular weight and molecular weight distribution of alginates. Carbohydr. Polymers 15: 171–193.Google Scholar
  35. Mouradi-Givernaud, A., T. Givernaud, H. Morvan & J. Cosson, 1992. Agar from Gelidium latifolium (Gelidiales, Rhodophyta), biochemical composition and seasonal variations. Bot. mar. 35: 153–159.CrossRefGoogle Scholar
  36. Murano, E., 1995a. Agar from Gracilaria species. Ph.D. Thesis, University of Portsmouth, Portsmouth, England.Google Scholar
  37. Murano, E., 1995b. Chemical structure and quality of agars from Gracilaria. J. appl. Phycol. 7: 245–254.CrossRefGoogle Scholar
  38. Murano, E., R. Toffanin, F Zanetti, S. H. Knutsen, S. Paoletti & R. Rizzo, 1992. Chemical and macromolecular characterisation of agars polymers from Gracilaria dura (C. Agardh) J. Agardh (Gracilariaceae, Rhodophyta). Carbohydr. Polymers 18: 171–178.Google Scholar
  39. Nicolaisen, F. M., I. Meyland & K. Schaumburg, 1980. 13C NMR spectra at 69.9 Mhz of agarose solutions and partly 6-O-methylated agarose at 95 °C. Acta Chem. Scand. Ser. B 34: 103–107.CrossRefGoogle Scholar
  40. Oza, R.M., 1978. Studies on Indian Gracilaria. IV. Seasonal variations in agar and gel strength of Gracilaria corticata J. Ag. occuring on the coast of Veraval. Bot. mar. 21: 165–167.CrossRefGoogle Scholar
  41. Patwary, U. M. & J. P. van der Meer, 1997. Construction of back-crossed Gelidium male-sterile and male-fertile lines and their growth comparison. J. appl. Phycol. 8: 483–486.CrossRefGoogle Scholar
  42. Preiss, J. & C. Levi, 1980. Starch biosynthesis and degradation. In Preiss, J. (ed.), The Biochemistry of Plants, Vol. 3, Academic Press, San Diego: 371–423.Google Scholar
  43. Rees, D. A., 1969. Structure, conformation, mechanisms in the formation of polysaccharides and networks. Adv. Carbohydr. Chem. Biochem. 24: 267–332.PubMedCrossRefGoogle Scholar
  44. Rotem, A., N. Roth-Bejerano & S. M. Arad, 1986. Effect of controlled environmental conditions on starch and agar content of Gracilaria sp. (Rhodophyceae). J. Phycol. 22: 117–121.Google Scholar
  45. Santelices, B., 1978. The morphological variation of Pterocladia caerulescens (Gelidiales, Rhodophyta) in Hawaii. Phycologia 17: 53–60.CrossRefGoogle Scholar
  46. Santelices, B., 1988. Synopsis of biological data on the seaweed genera Gelidium and Pterocladia (Rhodophyta). FAO Fisheries Synopsis 145: 1–55.Google Scholar
  47. Santelices, B., 1991. Production ecology of Gelidium. Hydrobiologia 221: 31–44.CrossRefGoogle Scholar
  48. Santelices, B. & M. S. Doty, 1989. A review of Gracilaria farming. Aquaculture 78: 95–133.CrossRefGoogle Scholar
  49. Seoane-Camba, J., 1964. L’effect de l’intensité lumineuse et de la température sur la concentration de la chlorophylle dans quelques algues marines bentiques. C. r. hebd. Séanc. Acad. Sci. Paris 259:1432–1435.Google Scholar
  50. Seoane-Camba, J., 1965. Estudios sobre las algas bentonicas en la costa sur de la Peninsula Iberica. Invest. Pesq. Barc. 29: 3–216.Google Scholar
  51. Silvestri, L. J., R. E. Hurst, L. Simpson & J. M. Settin, 1982. Analysis of sulphate in complex carbohydrates. Anal. Biochem. 123: 303–309.PubMedCrossRefGoogle Scholar
  52. Sousa-Pinto, I., 1994. Ecophysiology and growth of Gelidium ro-bustum in culture. PhD Dissertation, University of California, Santa Barbara CA (USA).Google Scholar
  53. Sousa-Pinto, I., R. Lewis & M. Pome-Fuller, 1996. The effects of phosphate concentration on growth and agar content of Gelidium robustum (Gelideaceae, Rhodophyta) in culture. Hydrobiologia 326/327: 437–443.CrossRefGoogle Scholar
  54. Torres, M., F X. Niell & P. Algarra, 1991. Photosynthesis of Gelidium sesquipedale: effects of temperature and light on pigment concentration, C/N ratio and cell-wall polysaccharides. Hydrobiologia 221: 77–82.CrossRefGoogle Scholar
  55. Usov, A.I., E. G. Ivanova & A. S. Shashkov, 1983. Polysaccharides of algae. XXXIII. Isolation and 13C-NMR spectral study of some new gel-forming polysaccharides from Japan sea red seaweeds. Bot. mar. 26: 285–294.CrossRefGoogle Scholar
  56. Usov, A. I., S. V. Yarotsky & A. S. Shashkov, 1980. 13C-NMR spectroscopy of red algal galactans. Biopolymers 19: 977–990.CrossRefGoogle Scholar
  57. Watase, M. & K. Nishinari, 1983. Rheological properties of agarose gels with different molecular weights. Rheol. Acta 22: 580–587.CrossRefGoogle Scholar
  58. Welti, D., 1977. Carrageenans. Part 12. The 300 MHz proton magnetic resonance spectra of methyl-D-galactopyranoside, methyl 3,6-anhydro-D-galactopyranoside, agarose, kappa-carrageenan and segments of iota-carrageenan and agarose sulphate. J. Chem. Res. (S): 312–313.Google Scholar
  59. Whyte, J. N. C., J. R. Englar, R. G. Saunders & J. C. Lindsay, 1981. Seasonal variations in the biomass, quantity and quality of agar, from the reproductive and vegetative stages of Gracilaria (verrucosa type). Bot. mar. 24: 493–501.CrossRefGoogle Scholar
  60. Yu, S., 1992. Enzyme of floridean starch and floridoside degradation in red algae. Ph.D. Thesis, Uppsala University, Uppsala, Sweden.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Isabel Sousa-Pinto
    • 1
  • Erminio Murano
    • 2
  • Susana Coelho
    • 1
  • Ana Felga
    • 1
  • Rui Pereira
    • 1
  1. 1.CIMAR and Departamento de BotânicaFaculdade de Ciências da Universidade do PortoPortoPortugal
  2. 2.POLYtech Research CenterArea Science ParkItaly

Personalised recommendations