Effects of nitrogen source, N:P ratio and N-pulse concentration and frequency on the growth of Gracilaria cornea (Gracilariales, Rhodophyta) in culture

  • Leonardo Navarro-Angulo
  • Daniel Robledo
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 137)


The effects of nitrogen source, nitrogemphosphorus ratio, nitrogen pulse concentrations and pulse frequency on Gracilaria cornea growth were investigated under laboratory cultures. No significant differences in growth rate were detected between nitrogen sources, the mean growth rate decreased from ca. 14 to 11% d−1 over 8 weeks. Our results indicate that G. cornea can efficiently grow either with inorganic (NH4-N, NO3-N, NO3NH4) or organic (urea) nitrogen. The N:P ratio had a significant effect on G. cornea specific growth rate at 10:1 treatment (8.53% d−1) when compared with ambient phosphate concentration (10:0), which produced the lowest growth rate (2.88% d−1). Neither nitrogen pulse concentration nor pulse frequency showed a significant effect on the specific growth rate, however, pulse frequency significantly affected biomass increase at 50 μM nitrogen (p < 0.05). Nitrogen sources containing NH4—N produced the highest phycoerythrin and protein contents being the most important N storage in G. cornea. The nitrogen storage capacity of G. cornea allows it to grow over a 7 day period with low nitrogen concentrations (< 50 μM). The understanding of nitrogen enrichment in G. cornea cultivation can be applied to manipulate pigment content or agar synthesis, and give the basis for its use in on-land biofiltering systems.

Key words

cultivation Gracilaria cornea nitrogen metabolism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armisén, R., 1995. World-wide use and importance of Gracilaria. J. appl. Phycol. 7: 231–243CrossRefGoogle Scholar
  2. Beer, S. & A. Eshel, 1985. Determining phycoerythrin and phycocy-anin concentrations in aqueous crude extracts of red algae. Aust. J. mar. Freshwat. Res. 36: 785–792.CrossRefGoogle Scholar
  3. Bird, K. T., C. Habig & T. DeBusk, 1982. Nitrogen allocation and storage patterns in Gracilaria tikvahiae (Rhodophyta). J. Phycol. 18: 344–348.CrossRefGoogle Scholar
  4. Chapman, A. R. O. & J. S. Craigie, 1977. Seasonal growth in Laminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. 40: 197–205.CrossRefGoogle Scholar
  5. Critchley, A. T., 1993. Gracilaria (Rhodophyta, Gracilariales): an economically important agarophyte. In Ohno, M. & A. T. Critchley (eds), Seaweed Cultivation and Marine Ranching. JICA. Kanagawa International Fisheries Training Center. Japan: 89–111.Google Scholar
  6. D’Elia, C. E & J. A. DeBoer, 1978. Nutritional studies of two red algae. II. Kinetics of ammonium and nitrate uptake. J. Phycol. 14:266–272.Google Scholar
  7. DeBoer, J. A., 1979. Effects of nitrogen enrichment on growth rate and phycocolloid content in Gracilaria foliifera and Neoagrd-hiella baileyi (Florideophyceae). Proc. int. Seaweed Symp. 9: 263–271.Google Scholar
  8. DeBoer, J. A., H. J. Guigli, T. L. Israel & C. E D’Elia, 1978. Nutritional studies of two red algae. I. Growth rate as a function of nitrogen source and concentration. J. Phycol. 14: 261–266.Google Scholar
  9. Dubois, M., E A. Gilles, J. K. Hamilton, D. A. Rebers & E Smith, 1956. Colorimetric method for the determination of sugar and related substances. Anal. Chem. 28: 350–356.CrossRefGoogle Scholar
  10. Evans, G. C., 1972. The quantitative analysis of plant growth. Blackwell, Oxford, 734 pp.Google Scholar
  11. Freile-Pelegrín, Y. & D. Robledo, 1997a. Effects of season on the agar content and chemical characteristics of Gracilaria cornea from Yucatán, México. Bot. mar. 40: 285–290.CrossRefGoogle Scholar
  12. Freile-Pelegrin, Y. & D. Robledo, 1997b. Influence of alkali treatment on agar from Gracilaria cornea from Yucatán, México. J. appl. Phycol. 9: 533–539.Google Scholar
  13. Friedlander, M. & A. Ben-Amotz, 1991. The effects of outdoor culture on growth and epiphytes of Gracilaria confería. Aquat. Bot. 39:315–333.CrossRefGoogle Scholar
  14. Friedlander, M. & I. Levy, 1995. Cultivation of Gracilaria in outdoor tanks and ponds. J. appl. Phycol. 7: 315–324.CrossRefGoogle Scholar
  15. Friedlander, M., N. Galai & H. Farbstein, 1990. A model of seaweed growth in an outdoor culture in Israel. Hydrobiologia 204/205: 367–373.CrossRefGoogle Scholar
  16. Haglund, K. & M. Pedersén, 1993. Outdoor pond cultivation of the subtropical marine red alga Gracilaria tenuistipitata in brackish water in Sweden. Growth, nutrient uptake, co-cultivation with rainbow trout and epiphyte control. J. appl. Phycol. 5: 271–284.Google Scholar
  17. Hanisak, M. D., 1990. The use of Gracilaria tikvahiae (Gracilariales, Rhodophyta) as a model system to understand the nitrogen nutrition of culture seaweeds. Hydrobiologia 204/205: 79–87.CrossRefGoogle Scholar
  18. Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotomet-ric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen 167: 191–194.Google Scholar
  19. Lapointe, B. E., 1981. The effects of light and nitrogen on growth, pigment content, and biochemical composition of Gracilaria foliifera var. angustissima 1 (Gigartimles, Rhodophyta). J. Phycol. 17: 90–95.CrossRefGoogle Scholar
  20. Lapointe, B. E., 1985. Strategies for pulse nutrient supply to Gracilaria cultures in the Florida Keys: interactions between concentration and frequency of nutrient pulses. J. exp. mar. Biol. Ecol. 93: 211–222.CrossRefGoogle Scholar
  21. Lapointe, B. E., 1987. Phosphorus-and nitrogen-limited photosynthesis and growth of Gracilaria tikvahiae (Rhodophyceae) in the Florida Keys: an experimental field study. Mar. Biol. 93: 561–568.CrossRefGoogle Scholar
  22. Lignell, A. & M. Pedersén, 1987. Nitrogen metabolism in Gracilaria secundata Harv. Hydrobiologia 151/152: 431–441.CrossRefGoogle Scholar
  23. Lobban, C. S. & P. J. Harrison, 1994. Seaweed ecology and physiology. Cambridge University Press, 366 pp.Google Scholar
  24. Lowry, O. H., N. J. Rosebrough, A. L. Farr & R. J. Randall, 1951. Protein measurement with the Folin phenol reagent. J. biol. Chem. 193: 265–275.PubMedGoogle Scholar
  25. McGlathery, K. J., M. E Pedersen & J. Borum, 1996. Changes in intracellular nitrogen pools and feedback controls on nitrogen uptake in Chaetomorpha linum (Chlorophyta). J. Phycol. 32: 393–401.CrossRefGoogle Scholar
  26. Orduña-Rojas, J., 1996. Efecto de la radiación y la temperatura en la liberación y desarrollo de las carposporas del alga roja Gracilaria corneal. Agardh (Gracilariales, Rodofita). MSc.Thesis CINVESTAV-Unidad Mérida, Yucatán, México, 43 pp.Google Scholar
  27. Pickering, T. D., M. E. Gordon & L. J. Tong, 1993. Effect of nutrient concentration and frequency on growth of Gracilaria chilensis plants and level of epiphytic algae. J. appl. Phycol. 5: 525–533.CrossRefGoogle Scholar
  28. Ryther, J. H., T. Corwin, A. DeBusk & L. D. Williams, 1981. Nitrogen uptake and storage by the red alga Gracilaria tikvahiae (McLachlan, 1979). Aquaculture 26: 107–115.CrossRefGoogle Scholar
  29. Smit, A. J., B. L. Robertson & D. R. du Preez, 1997. Influence of ammonium-N pulse concentrations and frequency, tank condition and nitrogen starvation on growth rate and biochemical composition of Gracilaria gracilis. J, appl. Phycol. 8: 473–481.Google Scholar
  30. Starr, R.C. & J.A. Zeikus, 1993. UTEX. The culture collection of algae at the University of Texas at Austin. J. Phycol. Suppl. 29: 1–106.CrossRefGoogle Scholar
  31. Vergara, J. J. & E X. Niell, 1993. Effects of nitrate availability and irradiance on internal nitrogen constituents in Corallina elongata (Rhodophyta). J. Phycol. 29: 285–293.CrossRefGoogle Scholar
  32. Zar, H., 1984. Biostatistical Analysis. Prentice-Hall, Inc., Englewood Cliffs, N.Y., 675 pp.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Leonardo Navarro-Angulo
    • 1
  • Daniel Robledo
    • 1
  1. 1.CINVESTAV-IPNMérida, YucatánMéxico

Personalised recommendations