Advertisement

Effect of tissue nitrogen and phosphorus quota on growth of Porphyra yezoensis blades in suspension cultures

  • Jeff T. Hafting
Conference paper
  • 432 Downloads
Part of the Developments in Hydrobiology book series (DIHY, volume 137)

Abstract

The effect of tissue N and P on growth of Porphyra yezoensis (strain U-51) blades in suspension cultures was investigated. Blades had the ability to store N in excess of requirements. The critical (0.40% fresh wt) and subsistence (0.153% fresh wt) levels of N were constant regardless of N source (NO3 or NH4 +) or light level. Blades did not have the ability to store excess P over the range of P loads given. The subsistence quota for P was higher when NH4 + was given, suggesting a decreased ability to utilize tissue P for growth. NO3 was a better source of N than NH4 + in terms of growth. Blades became bright green in colour when N limited, suggesting a link between phycoerythrin and tissue N. The optimal molar N:P of 13–15 was constant regardless of N source (NO3 or NH4 +) or light level. N:P < 13–15 indicated N limitation, while N:P > 13–15 indicated P limitation. P limited and light limited blades could store more N when NH4 + was given, than when NO3 was the N source, suggesting physiological mechanisms for taking advantage of this usually ephemeral N source, even when growth was limited. N and P reserves were used up relatively quickly (5 days), a characteristic of opportunistic species. Tissue analysis for N and P was a useful technique for determining nutrient status of P. yezoensis blades in land based tanks. As long as tissue N >0.40% fresh wt. and an N:P supply ratio of 13–15 is maintained, blade growth is not limited by N or P.

Key words

Porphyra yezoensis suspension cultures critical N subsistence quota molar N:P nutrient status 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, M J. & S. V. Smith, 1983. C:N:P ratios of benthic marine plants. Limnol. Oceanogr. 28: 568–574.CrossRefGoogle Scholar
  2. Bidwell, R. G. S., J. McLachlan & N. D. H. Lloyd, 1985. Tank cultivation of Irish Moss, Chondrus crispus Stackh. Bot. mar. 28: 87–97.CrossRefGoogle Scholar
  3. Björnsäter, B. R. & P. A. Wheeler, 1990. Effect of nitrogen and phosphorus supply on growth and tissue composition of Ulva fenestrata and Enteromorpha intestinalis (Ulvales, Chloro-phyta). J. Phycol. 26: 603–611.CrossRefGoogle Scholar
  4. DeBoer, J.A., 1981. Nutrients. In Lobban, C.S. & M.J. Wynne (eds), The Biology of Seaweeds, University of California Press, Los Angeles: 356–392.Google Scholar
  5. DeBoer, J. A., H. J. Guigli, T. L. Israel & C. F. D’Elia, 1978. Nutritional studies of two red algae. I. Growth rate as a function of nitrogen source and concentration. J. Phycol. 14: 261–266.CrossRefGoogle Scholar
  6. DeBusk, T. A., M. Blakeslee & J. H. Ryther, 1986. Studies on the outdoor cultivation of Ulva lactuca L. Bot. mar. 29: 381–386.CrossRefGoogle Scholar
  7. D’Elia, C. F. & J. A. DeBoer, 1978. Nutritional studies of two red algae. II. Kinetics of ammonium and nitrate uptake. J. Phycol. 14: 266–272.Google Scholar
  8. D’Elia, C. F., P. A. Steudler & N. Corwin, 1977. Determination of total nitrogen in aquaeous samples using persulfate digestion. Limnol. Oceanogr. 22: 760–763.CrossRefGoogle Scholar
  9. Droop, M. R., 1974. The nutrient status of algal cells in continuous culture. J. mar. biol. Ass. U.K. 54: 825–855.CrossRefGoogle Scholar
  10. Droop, M. R., 1983. 25 years of algal growth kinetics — a personal view. Bot. mar. 26: 99–112.CrossRefGoogle Scholar
  11. Flores-Moya, A., M. Altamiran, M. Cordero, M. E. González & M. G. Pérez, 1997. Phosphorus-limited growth in the seasonal winter red alga Porphyra leucosticta Thuret et Le Jolis. Bot. mar. 40: 187–191.CrossRefGoogle Scholar
  12. Hanisak, M. D., 1979. Nitrogen limitation of Codium fragile ssp. tomentosoides as determined by tissue analysis. Mar. Biol. 50: 333–337.Google Scholar
  13. Hanisak, M. D., 1990. The use of Gracilaria tikvahiae (Gra-cilariales, Rhodophyta) as a model system to understand the nitrogen nutrition of cultured seaweeds. Hydrobiologia 204/205: 79–87.CrossRefGoogle Scholar
  14. Herbert, S. K. & J. R. Waaland, 1988. Photoinhibition of photosynthesis in a sun and a shade species of the red algal genus Porphyra. Mar. Biol. 97: 1–7.CrossRefGoogle Scholar
  15. Hernandez, I., A. Corzo, F. J. Gordillo, M. D. Robles, E. Saez, J.A. Fernandez & F. X. Niell, 1993. Seasonal cycle of the gameto-phytic form of Porphyra umbilicalis: nitrogen and carbon. J. exp. mar. Biol. Ecol. 173: 181–196.CrossRefGoogle Scholar
  16. Imada, O., Y. Saito, K. I. Teramoto, 1971. Artificial culutre of laver. Proc. int. Seaweed Symp. 7: 358–363.Google Scholar
  17. Iwasaki, H., 1967. Nutritional studies of the edible seaweed Porphyra tenera. II. Nutrition of conchocelis. J. Phycol. 3: 30–34.CrossRefGoogle Scholar
  18. Johnston, H. W., 1971. A detailed chemical analysis of some edible Japanese seaweeds. Proc. int. Seaweed Symp. 7: 427–435.Google Scholar
  19. Jones, M. N., 1984. Nitrate reduction by shaking with cadmium: alternative to cadmium columns. Wat. Res. 18: 643–646.CrossRefGoogle Scholar
  20. Kain (Jones), J. M., 1991. Cultivation of attached seaweeds. In Guiry, M.D. & G. Blunden (eds), Seaweed Resources in Europe: Uses and Potential, John Wiley & Sons, Chichester: 309–376.Google Scholar
  21. Lapointe, B. E. & C. S. Duke, 1984. Biochemical strategies for growth of Gracilaria tikvahiae (Rhodophyta) in relation to light intensity and nitrogen availability. J. Phycol. 20: 488–495.CrossRefGoogle Scholar
  22. Lewis, R. J. & M. D. Hanisak, 1996. Effects of phosphate and nitrate supply on productivity, agar content and physical properties of agar of Gracilaria strain G-16S. J. appl. Phycol. 8: 41–49.CrossRefGoogle Scholar
  23. Lignell, Å., P. Ekman & M. Pedersén, 1987. Cultivation technique for marine seaweeds allowing controlled and optimized conditions in the laboratory and on a pilot scale. Bot. mar. 30: 417–424.CrossRefGoogle Scholar
  24. Lobban, C. S. & P. J. Harrison, 1994. Seaweed Ecology and Physiology. Cambridge University Press, 366 pp.Google Scholar
  25. McLachlan, J., 1973. Growth media-marine. In Stein, J.S. (ed.), Handbook of Phycological Methods, Cambridge University Press: 25–51.Google Scholar
  26. Mencher, F. M., R. B. Spencer, J. W. Woessner, S. J. Katase & D. K. Barclay, 1983. Growth of nori (Porphyra tenera) in an experimental OTEC-aquaculture system in Hawaii. J. World Maricult. Soc. 14: 456–470.Google Scholar
  27. Neish, I. C. & L. B. Knutson, 1977. The significance of density, suspension and water movement during commercial propagation of macrophyte clones. Proc. int. Seaweed Symp. 9: 451–461.Google Scholar
  28. Neish, A. C., P. F. Shacklock, C. H. Fox & F. J. Simpson, 1977. The cultivation of Chondrus crispus. Factors affecting growth under greenhouse conditions. Can. J. Bot. 55: 2263–2271.CrossRefGoogle Scholar
  29. Neushul, M., J. Benson, B. W. W. Harger & A. C. Charters, 1992. Macroalgal farming in the sea: water motion and nitrate uptake. J. appl. Phycol. 4: 255–265.CrossRefGoogle Scholar
  30. Ryther, J. H., N. Corwin, T. A. DeBusk & L. D. Williams, 1981/82. Nitrogen uptake and storage by the red alga Gracilaria tikvahiae. Aquaculture 26: 107–115.CrossRefGoogle Scholar
  31. Schramm, W., 1991. Cultivation of unattached seaweeds. In Guiry, M. D. & G. Blunden (eds), Seaweed Resources in Europe: Uses and Potential, John Wiley & Sons, Chichester: 379–413.Google Scholar
  32. Shivji, M. S., 1985. Interactive effects of light and nitrogen on growth and chemical composition of juvenile Macrocystis pyrifera (L.) C. Ag. (Phaeophyta) sporophytes. J. exp. mar. Biol. Ecol. 89: 81–96.CrossRefGoogle Scholar
  33. South, G. S. & A. Whittick, 1987. Introduction to Phycology. Blackwell Scientific Publications, Oxford, 278 pp.Google Scholar
  34. Strickland, J. D. H. & T. R. Parsons, 1972. A Practical Handbook of Seawater Analysis, 2nd edn. Fish. Res. Bd. Canada, Ottawa, 310 pp.Google Scholar
  35. Thomas, T. E. & P. J. Harrison, 1985. Effect of nitrogen supply on nitrogen uptake, accumulation and assimilation in Porphyra perforata (Rhodophyta). Mar. Biol. 85: 269–278.CrossRefGoogle Scholar
  36. Tseng, C. K., 1981a. Commercial cultivation. In Lobban, C. S. & M. J. Wynne (eds), The Biology of Seaweeds, University of California Press, Los Angeles: 680–725.Google Scholar
  37. Tseng, C. K., 1981b. Marine phycoculture in China. Proc. int. Seaweed Symp. 10: 123–152.Google Scholar
  38. Ulrich, A., 1952. Physiological bases for assessing the nutritional requirements of plants. Ann. Rev. Pl. Physiol. 3: 207–228.CrossRefGoogle Scholar
  39. Wheeler, P. A. & B. R. Björnsäter, 1992. Seasonal fluctuations in tissue nitrogen, phosphorus, and N:P for five macroalgal species common to the Pacific Northwest coast. J. Phycol. 28: 1–6.CrossRefGoogle Scholar
  40. Wu, C.-Y., Y.-X. Zhang, R.-L. Li, Z.-S. Penc, Y.-F. Zhang, Q.-C. Liu, J.-P. Zhang & X. Fang, 1984. Utilization of ammonium-nitrogen by Porphyra yezoensis and Gracilaria verrucosa. Hydrobiologia 116/117 (Dev. Hydrobiol. 22): 475–477.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Jeff T. Hafting
    • 1
  1. 1.Department of BotanyUniversity of British ColumbiaVancouverCanada

Personalised recommendations