Advertisement

Spatial variability in secondary metabolite production by the tropical red alga Portieria hornemannii

  • Daniel B. Matlock
  • David W. Ginsburg
  • Valerie J. Paul
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 137)

Abstract

Apakaochtodenes A and B, which are halogenated monoterpenes and the major secondary metabolites in Portieria hornemannii, are effective feeding deterrents toward herbivorous reef fishes on Guam. A reciprocal transplant study was conducted to determine the relative importance of environmental versus genetic factors influencing siteto-site differences in the amount of apakaochtodenes produced. The study sites were chosen for characteristically high (Anae Island) and low (Gun Beach) apakaochtodene levels. Algae collected from Anae Island and Gun Beach differed significantly in concentrations of apakaochtodene B at the start of the experiment, but by the end they had almost the same amount of the metabolite because the level had decreased in plants at Anae Island. Additionally, algae from Anae Island had relatively high levels of apakaochtodene A (60–90% of apakaochtodene B concentration), whereas this compound was rarely detected in Gun Beach algae. Transplantation to a different site had no significant effect on the levels of the apakaochtodenes, other than a decrease in concentration that might have resulted from handling the algae. Our data indicate a strong site-to-site difference in apakaochtodene levels in P. hornemannii on Guam, notable interplant variation in the levels of the compounds among thalli within the same site, and some evidence for temporal variation in levels of these compounds over a period of four weeks.

Key words

monoterpene chemical variation spatial variation transplant secondary metabolites red algae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boiser, R. C. & M. E. Hay, 1996. Are tropical plants better defended? Palatability and defenses of temperate versus tropical seaweeds. Ecology 77: 2269–2286.CrossRefGoogle Scholar
  2. Carlton, D. J., J. Lubchenco, M. S. Sparrow & C. D. Trowbridge, 1989. Fine-scale variability of lanosol and its disulfate ester in the temperate red alga Neorhodomela larix. J. chem. Ecol. 15: 1321–1333.CrossRefGoogle Scholar
  3. Cronin, G. & M. E. Hay, 1996a. Within-plant variation in seaweed palatability & chemical defenses: Optimal defense theory versus the growth-differentiation balance hypothesis. Oecologia 105: 361–368.CrossRefGoogle Scholar
  4. Cronin, G. & M. E. Hay, 1996b. Induction of seaweed chemical defenses by amphipod grazing. Ecology 77: 2287–2301.CrossRefGoogle Scholar
  5. Cronin, G. & M. E. Hay, 1996c. Effects of light and nutrient availability on the growth, secondary chemistry, and resistance to herbivory of two brown seaweeds. Oikos 77: 93–106.CrossRefGoogle Scholar
  6. de Nys, R., P. D. Steinberg, C. N. Rogers, T. S. Charlton & M. W. Duncan, 1996. Quantitative variation of secondary metabolites in the sea hare Aplysia paryula and its host plant, Delisea pulchra. Mar. Ecol. Prog. Ser. 130: 135–146.CrossRefGoogle Scholar
  7. Fuller, R. W., J. H. Cardellina II, Y. Kato, L. S. Brinen, J. Clardy, K. M. Snader & M. R. Boyd, 1992. A pentahalogenated monoterpene from the red alga Portieria hornemannii produces a novel cytotoxicity profile against a diverse panel of human tumor cell lines. J. med. Chem. 35: 3007–3011.PubMedCrossRefGoogle Scholar
  8. Fuller, R. W., J. H. Cardellina II, J. Jurek, P. J. Scheuer, B. Alvarado-Linder, M. McGuire, G. N. Gray, J. R. Steiner, J. Clardy, E. Menez, R. H. Shoemaker, D. J. Newman, K. M. Snader & M. R. Boyd, 1994. Isolation and structure/activity features of halomon-related antitumor monoterpenes from the red alga Portieria hornemannii. J. med. Chem. 37: 4407–4411.PubMedCrossRefGoogle Scholar
  9. Hay, M. E., 1996. Marine chemical ecology: what’s known and what’s next? J. exp. mar. Biol. Ecol. 200: 103–134.CrossRefGoogle Scholar
  10. Hay, M. E. & W. Fenical, 1992. Chemical mediation of seaweed-herbivore interactions. In John, D. M., S. J. Hawkins & J. H. Price (eds), Plant-Animal Interactions in the Marine Benthos. Sys-tematics Association Special Volume No. 46. Clarendon Press, Oxford: 319–337.Google Scholar
  11. Hay, M. E. & P. D. Steinberg, 1992. The chemical ecology of plant-herbivore interactions in marine versus terrestrial communities. In Rosenthal, G. A. & M. R. Berenbaum (eds) Herbivores: Their Interactions With Secondary Plant Metabolites, Vol. I. Academic Press, San Diego: 371–413.CrossRefGoogle Scholar
  12. Meyer, K. D. & V. J. Paul, 1992. Intraplant variation in secondary metabolite concentration in three species of Caulerpa (Chloro-phyta: Caulerpales) and its effects on herbivorous fishes. Mar. Ecol. Prog. Ser. 82: 249–257.CrossRefGoogle Scholar
  13. Meyer, K. D. & V. J. Paul, 1995. Variation in secondary metabolite and aragonite concentrations in the tropical green seaweed Neo-meris annulata: effects on herbivory by fishes. Mar. Biol. 122: 537–545.CrossRefGoogle Scholar
  14. Paul, V. J. & K. L. Van Alstyne, 1988. Chemical defense and chemical variation in some tropical Pacific species of Halimeda (Halimedaceae: Chlorophyta). Coral Reefs 6: 263–270.CrossRefGoogle Scholar
  15. Paul, V. J. & K. L. Van Alstyne, 1992. Activation of chemical defenses in the tropical green algae Halimeda spp. J. exp. mar. Biol. Ecol. 160: 191–203.CrossRefGoogle Scholar
  16. Paul, V. J., S. G. Nelson, & H. R. Sanger, 1990. Feeding preferences of adult and juvenile rabbitfish Siganus argentus in relation to chemical defenses in tropical seaweeds. Mar. Ecol. Prog. Ser. 60: 23–24.CrossRefGoogle Scholar
  17. Paul, V. J., K. D. Meyer, S. G. Nelson & H. R. Sanger, 1992. Deterrent effects of seaweed extracts and secondary metabolites on feeding by the rabbitfish Siganus spinus. Proc. 7th Internat. Coral Reef Symp. 2: 867–874.Google Scholar
  18. Paul, V. J., M. E. Hay, J. E. Duffy, W. Fenical & K. Gustafson, 1987. Chemical defense in the seaweed Ochtodes secundiramea (Montagne) Howe (Rhodophyta): Effects of its monoterpenoid components upon diverse coral-reef herbivores. J. exp. mar. Biol. Ecol. 114:249–260.CrossRefGoogle Scholar
  19. Pennings, S. C., M. P. Puglisi, T. J. Pitlick, A. C. Himaya & V. J. Paul, 1996. Effects of secondary metabolites and CaCO3 on feeding by surgeonfishes and parrotfishes: Within-plant comparisons. Mar. Ecol. Prog. Ser. 134: 49–58.CrossRefGoogle Scholar
  20. Puglisi, M. P. & V. J. Paul, 1997. Intraspecific variation in the red alga Portieria hornemannii: Monoterpene concentrations are not influenced by nitrogen or phosphorus enrichment. Mar. Biol. 128: 161–170.CrossRefGoogle Scholar
  21. Steinberg, P. D., 1992. Geographical variation in the interaction between marine herbivores and brown algal secondary metabolites. In Paul V. J., (ed.), Ecological roles for marine natural products, Comstock publishing Associates, Ithaca, NY, USA: 51–92.Google Scholar
  22. Targett, N. M., L. D. Coen, A. A. Boettcher & C. E. Tanner, 1992. Biogeographic comparisons of marine algal polyphenolics: evidence against a latitudinal trend. Oecologia: 89: 464–470.Google Scholar
  23. Trono, G. C., Jr., 1969. The marine benthic algae of the Caroline Islands. II. Phaeophyta and Rhodophyta. Micronesica 5: 25–119.Google Scholar
  24. Trono, G. C., Jr. & E. T. Ganzon-Fortes, 1988. Philippine Seaweeds. National Bookstore, Inc., Publishers, Metro Manila, Philippines: 146–147.Google Scholar
  25. Van Alstyne, K. L., 1988. Herbivore grazing increases polyphenolic defenses in the intertidal brown alga Fucus distichus. Ecology 69: 655–663.CrossRefGoogle Scholar
  26. Yates, J. L., & P. Peckol, 1993. Effects of nutrient availability and herbivory on polyphenolics in the seaweed Fucus vesiculosus. Ecology 74: 1757–1766.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Daniel B. Matlock
    • 1
  • David W. Ginsburg
    • 1
    • 2
  • Valerie J. Paul
    • 1
  1. 1.University of Guam Marine LaboratoryMangilaoUSA
  2. 2.Biology DepartmentSeattle UniversitySeattleUSA

Personalised recommendations