A conceptual framework for marine agronomy

  • B. Santelices
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 137)


Between the late 1960s and the early 1980s, several generations of phycologists in Hawaii and the Philippines, associated with M. S. Doty, contributed to developing a new approach, and to advance concepts in marine agronomy. This study reviews the approach and the main concepts contributed. Integrating these contributions with others, a basic conceptual framework for marine agronomy is presented.

Key words

agronomic ordination farming productivity multi-step farming seaweeds site fertility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dawson, E. Y., 1966. Marine Botany. An introduction. Holt, Rine-hart & Winston, Inc. New York, Chicago, San Francisco, Toronto, London, 371 pp.Google Scholar
  2. Doty, M. S., 1970. The Eucheuma opportunity. Science Review (August 1969): 4–11.Google Scholar
  3. Doty, M. S., 1971. Physical factors in the production of tropical benthic marine algae. In Costlow, J.D. (ed.), Fertility of the Sea, Vol. 1. Gordon & Breack Science Publishers, New York: 99–121.Google Scholar
  4. Doty, M. S., 1979. Status of marine agronomy, with special reference to the tropics. Proc. int. Seaweed Symp. 9: 35–58.Google Scholar
  5. Doty, M. S., 1981. Eucheuma farm productivity. Proc. int. Seaweed Symp. 8: 688–691.Google Scholar
  6. Doty, M. S., 1986. The production and use of Eucheuma. In Doty, M. S., J. F. Caddy & B. Santelices (eds), Case Studies of Seven Commercial Seaweed Resources. FAO Fisheries Technical Paper 281. Food and Agriculture Organization of the United Nations, Rome: 123–164.Google Scholar
  7. Drew, K. M., 1949. Conchocelis-phase in the life-history of Por-phyra umbilicalis (L.) Kuetz. Nature, London 164: 748.CrossRefGoogle Scholar
  8. Frederiksen, S. & J. Rueness, 1989. Culture studies of Gelidium latifolium (Grev.) Born. et Thur. (Rhodophyta) frorh Norway. Growth and nitrogen storage in response to varying photon flux density, temperature and nitrogen availability. Bot. mar. 32: 539–546.Google Scholar
  9. Hoyle, M. D., 1976. Autoecology of ogo (Gracilaria) and Limu Manauena (G. coronopifolia) in Hawaii, with special emphasis on Gracilaria species as indicator of sewage pollution. Ph.D. Thesis. University of Hawaii, 480 pp.Google Scholar
  10. Hoyle, M. D., 1978. Reproductive phenology and growth rates in two species of Gracilaria from Hawaii. J. exp. mar. Biol. Ecol. 35: 273–283.CrossRefGoogle Scholar
  11. Jensen, A., 1993. Present and future needs for algae and algal products. Hydrobiologia 260/261: 15–23.CrossRefGoogle Scholar
  12. Kraft, G. 1997. In Memoriam. Maxwell Stanford Doty. Phycologia 36: 82–90.CrossRefGoogle Scholar
  13. Littler, M. M. & D. S. Littler, 1980. The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. Am. Nat. 116: 25–44.CrossRefGoogle Scholar
  14. Littler, M. M., D. S. Littler & P. R. Taylor, 1983. Evolutionary strategies in a tropical barrier reef system: functional form groups of marine macroalgae. J. Phycol. 19: 229–237.CrossRefGoogle Scholar
  15. Lobban, C. S. & P. J. Harrison, 1994. Seaweed ecology and physiology. Cambridge University Press, Cambridge, 365 pp.CrossRefGoogle Scholar
  16. McCandless, E. L., 1981. Polysaccharides of the seaweeds. In Lobban, C. S. & M. J. Wynne (eds), The Biology of Seaweeds. Blackwell Scientific, Oxford: 559–589.Google Scholar
  17. Miura, A., 1975. Porphyra cultivation in Japan. In Tokida J. amp; H. Hirose (eds), Advance of Phycology in Japan. Dr W. Junk Publishers, The Hague: 273–304.Google Scholar
  18. Miura, A., 1976. Genetic studies of cultivated Porphyra (Nori) improvement. Mar. Sci. 8: 15–21.Google Scholar
  19. Neish, A. C. & C. Fox, 1971. Greenhouse experiments (1971) on the vegetative propagation of Chondrus crispus (Irish Moss). Technical Report N° 12, Atlantic Regional Laboratory, National Research Council of Canada, Halifax, N.S., 35 pp.Google Scholar
  20. Neish, A. C., P. F. Schacklock, C. H. Fox & F J. Simpson, 1977. The cultivation of Chondrus crispus. Factors affecting growth under greenhouse conditions. Can. J. Bot. 55: 2263–2271.CrossRefGoogle Scholar
  21. Neushul, M., 1972. Functional interpretation of benthic marine algal morphology. In Abbott, I. A. & M. Kurogi (eds), Contributions to the Systematics of Benthic Marine Algae of the North Pacific. Japan Society for Phycology, Tokyo, Japan: 47–73.Google Scholar
  22. North, W. J., 1971. Introduction and background. In North, W. J. (ed.), The Biology of Giant Kelp Beds (Macrocystis) in California. Nova Hedwigia Beih. 32: 1–96.Google Scholar
  23. Ohme, M., Y. Kunifuji & A. Miura, 1986. Cross experiments of the color mutants in Porphyra yezoensis Ueda. Jap. J. Phycol. 34: 101–106.Google Scholar
  24. Ohno, M. & A. T. Critchley, 1993. Seaweed cultivation and marine ranching. Japan International Cooperation Agency, Japan, 151 pp.Google Scholar
  25. Patwary, M. U. & J. P. van der Meer, 1992. Genetics and breeding of cultivated seaweeds. Korean J. Phycol. 7: 281–318.Google Scholar
  26. Pérez, R., 1972. Opportunité de l’implantation de l’algue Macro-cystis pyrifera sur les côte bretonnes. Sci. Pêche 135: 1–9.Google Scholar
  27. Pizarro, A. & H. Barrales, 1986. Field assessment of two methods for planting the agar-containing seaweed, Gracilaria, in Northern Chile. Aquaculture 59: 31–43.CrossRefGoogle Scholar
  28. Pizarro, A. & B. Santelices, 1993. Environmental variation and large scale Gracilaria production. Hydrobiologia 260/261: 357–363.CrossRefGoogle Scholar
  29. Santelices, B., 1975. Ecological studies on Hawaiian Gelidiales (Rhodophyta). Ph.D. Thesis, University of Hawaii, 524 pp.Google Scholar
  30. Santelices, B., 1978. Multiple interaction of factors in the distribution of some Hawaiian Gelidiales (Rhodophyta). Pac. Sci. 32: 119–147.Google Scholar
  31. Santelices, B., 1990. Managing the wild crop, propagating and cultivating seaweeds in Chile. In de Oliveira E. C. & N. Kautsky (eds), Proceeding Workshop on Cultivation of Seaweeds in Latin America. Universidad de Sao Paulo, Brasil: 27–34.Google Scholar
  32. Santelices, B., 1992. Strain selection of clonal seaweeds. Prog. Phycol. Res. 8:85–116.Google Scholar
  33. Santelices, B., 1996. Seaweed research and utilization in Chile: moving into a new phase. Hydrobiologia 326/327: 1–14.CrossRefGoogle Scholar
  34. Santelices, B. & M. S. Doty, 1989. A review of Gracilaria farming. Aquaculture 78: 95–133.CrossRefGoogle Scholar
  35. Santelices, B., D. Aedo & D. Varela, 1995. Causes and implications of intraclonal variation in Gracilaria chilensis (Rhodophyta). J. appl. Phycol. 7: 283–290.CrossRefGoogle Scholar
  36. Shin, J. A. & A. Miura, 1990. Estimation of the degree of self-fertilization in Porphyra yezoensis. Hydrobiologia 204/205: 397–400.CrossRefGoogle Scholar
  37. Steneck, R. S. & L. Watling, 1982. Feeding capabilities and limitation of herbivorous molluscs: a functional form approach. Mar. Biol. 68: 299–312.CrossRefGoogle Scholar
  38. Stoloff, L. & P. Silva, 1957. An attempt to determine possible taxonomic significance of the properties of water extractable polysaccharides in red algae. Econ. Bot. 11: 327–330.CrossRefGoogle Scholar
  39. Tseng, C. K., 1981. Commercial cultivation. In Lobban, C. S. & M. J. Wynne (eds), The Biology of Seaweeds. Blackwell Scientific, Oxford: 680–725.Google Scholar
  40. Westermeier, R., I. Gómez & P. Rivera, 1993. Suspended farming of Gracilaria chilensis (Rhodophyta, Gigartinales) at Cariquilda River, Maullín, Chile. Aquaculture 113: 215–229.CrossRefGoogle Scholar
  41. Wu, C. Y. & G. H. Lin, 1987. Progress in the genetics and breeding of economic seaweeds in China. Hydrobiologia 151/152: 57–61.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • B. Santelices
    • 1
  1. 1.Departamento de Ecología, Facultad de Ciencias BiológicasP. Universidad Católica de ChileSantiagoChile

Personalised recommendations