Advertisement

Using in situ substratum sterilization and fluorescence microscopy in studies of microscopic stages of marine macroalgae

  • Matthew S. Edwards
Conference paper
  • 420 Downloads
Part of the Developments in Hydrobiology book series (DIHY, volume 137)

Abstract

The methods currently used for examining the relative contribution of microscopic stages to the persistence of natural populations of marine macroalgae can be inappropriate for use in subtidal habitats. Also, because of their microscopic size, direct examination and obtaining an estimate of recruitment, growth and mortality of these stages in the field is difficult. A method of removing microscopic algal stages from natural rock surfaces using watertight tents and water-soluble chemicals is presented. Also discussed is the use of a previously described method of fluorescent labelling these microscopic stages that, when examined under UV light, allows for their precise identification and growth to be determined. Together, these methods can be effective in examimng the ecology of algal microscopic stages in the field.

Key words

fluorescence microscopy microscopic stages recruitment seed banks sterilize 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baselski, V. S. & M. K. Robinson, 1989. A staining kit for detection of opportunistic pathogens in bronchoalveolar lavage specimens. Amer. Clin. Lab. July, 1989: 36–37.Google Scholar
  2. Blanchette, C. A., 1996. Seasonal patterns of disturbance influence the recruitment of the sea palm, Postelsia palmaeformis. J. exp. mar. Biol. Ecol. 197: 1–14.CrossRefGoogle Scholar
  3. Chapman, A. R. O., 1986. Population and community ecology of seaweeds. Adv. mar. Biol. 23: 1–161.CrossRefGoogle Scholar
  4. Cohen, J., 1988. Statistical Power Analysis for the Behavioral Sciences 2nd edn. Lawrence Erlbaum Associates, New Jersey, 567 pp.Google Scholar
  5. Cole, K., 1964. Induced fluorescence in gametophytes of some Laminariales. Can. J. Bot. 42: 1173–1183.CrossRefGoogle Scholar
  6. Dayton, P. K., 1985. Ecology of kelp communities. Ann. Rev. Ecol. Syst. 16: 215–245.CrossRefGoogle Scholar
  7. Edwards, M. S., 1996. Factors regulating the recruitment of the annual alga Desmarestia ligulata along the central California coast. M.S. Thesis. San Francisco State University, 67 pp.Google Scholar
  8. Flavier, A. B. & R. G. Zingmark, 1993. Macroalgal recruitment in a high marsh creek of North Inlet Estuary, South Carolina. J. Phycol. 29: 2–8.CrossRefGoogle Scholar
  9. Harlin, M. M. & J. M. Lindbergh, 1977. Selection of substrata by seaweeds: optimal surface relief. Mar. Biol. 40: 33–40.CrossRefGoogle Scholar
  10. Hoffman, A. J., 1987. The arrival of propagules at the shore: a review. Bot. mar. 30: 151–165.CrossRefGoogle Scholar
  11. Hoffman, A. J. & B. Santelices, 1991. Banks of microscopic forms: hypotheses on their functioning and comparisons with seed banks. Mar. Ecol. Prog. Ser. 79: 185–194.CrossRefGoogle Scholar
  12. Hsiao, S. I. C. & L. D. Druehl, 1973. Environmental control of gametogenesis in Laminaria saccharina. IV. In situ development of gametophytes and young sporophytes. J. Phycol. 9: 160–164.Google Scholar
  13. Kain, J. M., 1975. Algal colonization of some cleared subtidal areas. J. Ecol. 63: 739–765.CrossRefGoogle Scholar
  14. Klinger, T., 1984. Allocation of the blade surface area to meiospore production in annual and perennial representatives of the genus Laminaria. M.S. Thesis, Univ. British. Columbia, Vancouver, 96 pp.Google Scholar
  15. Nakazawa, S., K. Takamura & M. Abe, 1969. Rhizoid differentiation in Fucus eggs labelled with Calcofluor White and birefringence of cell wall. Bot. Mag. Tokyo 82: 41–44.Google Scholar
  16. Littler, M. M. & D. S. Littler, 1985. Ecological field methods: macroalgae. Handbook of Phycological Methods. Cambridge University Press, New York, 617 pp.Google Scholar
  17. Reed, D. C. & M. S. Foster, 1984. The effect of canopy shading on algal recruitment and growth in a giant kelp forest. Ecology, 65: 937–948.CrossRefGoogle Scholar
  18. Reed, D. C., T. W. Anderson, A. W. Ebeling & M. Anghera, 1997. The role of reproductive synchrony in the colonization potential of kelp. Ecology, 78: 2443–2457.CrossRefGoogle Scholar
  19. Rice, W. R., 1990. A consensus combined p-value test and the family-wide significance of component tests. Biometrics 46: 303–308.CrossRefGoogle Scholar
  20. Santelices, B., 1990. Patterns of reproduction, dispersal and recruitment in seaweeds. Oceanogr. Mar. Biol. ann. Rev. 28: 177–276.Google Scholar
  21. Santelices, B., A. J. Hoffman, D. Aedo, M. Bobadilla & R. Otaíza, 1995. A bank of microscopic forms on disturbed boulders and stones in tide pools. Mar. Ecol. Prog. Ser. 129: 215–228.CrossRefGoogle Scholar
  22. Schiel, D. R. & M. S. Foster, 1986. The structure of subtidal algal stands in temperate waters. Oceanogr. mar. Biol. Ann. Rev. 24: 265–307.Google Scholar
  23. Serrão, E. A., L. Kautsky & S. H. Brawley, 1996. Distributional success of the marine seaweed Fucus vesiculosus L. in the brackish Baltic Sea correlates with osmotic capabilities of Baltic gametes. Oecologia 107: 1–12.CrossRefGoogle Scholar
  24. Wilson, O. T., 1925. Some experimental observations of marine algal successions. Ecology 6: 303–311.CrossRefGoogle Scholar
  25. Vadas, R. L., S. Johnson & T. A. Norton, 1992. Recruitment and mortality of early post-settlement stages of benthic algae. Br. phycol. J. 27:331–351.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Matthew S. Edwards
    • 1
    • 2
  1. 1.Department of BiologyUniversity of CaliforniaSanta CruzUSA
  2. 2.Moss Landing Marine LaboratoriesMoss LandingUSA

Personalised recommendations