Obtaining absorption spectra from individual macroalgal spores using microphotometry

  • Michael H. Graham
  • B. Greg Mitchell
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 137)


Information on the ecophysiology of macroalgal planktonic propagules (e.g. spores) has been hard to obtain, given their small size and low concentration in the water column. Studies of the photo-physiology of macroalgal spores, for example, have been limited by the need to aggregate many spores into bulk samples for analysis. Subsequently, physiological variability among spores (e.g. pigment concentration, absorption characteristics) is lost, and taxonomic comparisons from multi-taxa samples are impossible. Here we present a technique that utilizes a spectral microphotometer to produce visible (400–800 nm) absorption spectra from individual particles; the particles in our case are maeroalgal spores. The microphotometer consists of a microscope fitted with a monochromator and spectrophotometer. After mounting spores from laboratory or field suspensions onto transparent membrane filters, absorption characteristics of individual spores, or even individual plastids, can be evaluated independently from the remaining particles in the sample. Use of transparent rather than opaque membrane filters allows for determination of absorption spectra, as well as more traditional microscopic analyses (e.g. bright field, dark field, epi-fluorescence). Glutaraldehyde fixation and cold storage (-10 °C) were found to be appropriate for maintaining the integrity of absorption spectra for at least 3 days. To demonstrate the utility of microphotometry for maeroalgal studies, absorption spectra were obtained and analyzed from spores of various kelps and filamentous red algae.

Key words

absorption spectra microphotometry spores kelp Laminariales Phaeophyceae red algae Rhodophyta 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amsler, C. D. & M. Neushul, 1991. Photosynthetic physiology and chemical composition of spores of the kelps Macro-cystis pyrifera, Nereocystis luetkeana, Laminaria farlowii, and Pterygophora californica (Phaeophyceae). J. Phycol. 27: 26–34.CrossRefGoogle Scholar
  2. Beach, K. S., C. M. Smith, T. Michael & H. Shin, 1995. Photosynthesis in reproductive unicells of Ulva fasciata and Entero-morpha flexuosa: implications for ecological success. Mar. Ecol. Prog. Ser. 125: 229–237.CrossRefGoogle Scholar
  3. Bidigare, R. R., M. E. Ondrusek, M. C. Kennicutt II, R. Iturriaga, H. R. Harvey, R. R. Hoham & S. A. Macko, 1993. Evidence for a photoprotective function for secondary carotenoids of snow algae. J. Phycol. 29: 427–434.CrossRefGoogle Scholar
  4. Brzezinski, M. A., D. C. Reed & C. D. Amsler, 1993. Neutral lipids as major storage products in zoospores of the giant kelp Macrocystis pyrifera (Phaeophyceae). J. Phycol. 29: 16–23.CrossRefGoogle Scholar
  5. Carpenter, E. J., J. Chang & L. P. Shapiro, 1991. Green and blue fluorescing dinoflagellates in Bahamian waters. Mar. Biol. 108: 145–149.CrossRefGoogle Scholar
  6. Carpenter, E. J., J. Chang, M. Cotteli, J. Schubauer, H. W. Paerl, B. M. Bebout & D. G. Capone, 1990. Re-evaluation of nitrogenase oxygen-protective mechanism in the planktonic marine cyanobacterium Trichodesmium. Mar. Ecol. Prog. Ser. 65: 151–158.CrossRefGoogle Scholar
  7. Garbary, D. J., K. Y. Kim, T. Klinger & D. Duggins, 1999. Preliminary observations on the development of kelp gameto-phytes endophytic in red algae. Hydrobiologia, 398/399 (Dev. Hydrobiol. 137): 247–252.CrossRefGoogle Scholar
  8. Grzymski, J., G. Johnsen & E. Sakshaug, 1997. The significance of intracellular self-shading on the biooptical properties of brown, red, and green macroalgae. J. Phycol. 33: 408–414.CrossRefGoogle Scholar
  9. Henry, E. C. & K. M. Cole, 1982. Ultrastructure of swarmers in the Laminariales (Phaeophyceae). I. Zoospores. J. Phycol. 18: 550–569.CrossRefGoogle Scholar
  10. Iturriaga, R. & D. A. Siegel, 1989. Microphotometric characterization of phytoplankton and detrital absorption properties of the Sargasso Sea. Limnol. Oceanogr. 34: 1706–1726.CrossRefGoogle Scholar
  11. Iturriaga, R., B. G. Mitchell & D. A. Kiefer, 1988. Microphotometric analysis of individual particle absorption spectra. Limnol. Oceanogr. 33: 128–135.CrossRefGoogle Scholar
  12. Jeffrey, S. W., R. F. C. Mantoura & S. W. Wright, 1997. Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publishing, Paris, 661 pp.Google Scholar
  13. Lobban, C. S. & P. J. Harrison, 1994. Seaweed ecology and physiology. Cambridge University Press, Cambridge, 366 pp.CrossRefGoogle Scholar
  14. Madden, H. H., 1978. Comments on the Savitsky-Golay convolution method for least-squares fit smoothing and differentiation of digital data. Anal. Chem. 50: 1383–1386.CrossRefGoogle Scholar
  15. Robinson, D. H., K. R. Arrigo, R. Iturriaga & C. W. Sullivan, 1995. Microalgal light-harvesting in extreme low-light environments in McMurdo Sound, Antarctica. J. Phycol. 31: 508–520.CrossRefGoogle Scholar
  16. Rowan, K. S., 1989. Photosynthetic Pigments of Algae. Cambridge University Press, Cambridge, 334 pp.Google Scholar
  17. Savitsky, A. & M. J. E. Golay, 1964. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36: 1627–1639.CrossRefGoogle Scholar
  18. Smith, C. M. & R. S. Alberte, 1994. Characterization of in vivo absorption features of chlorophyte, phaeophyte and rhodophyte algal species. Mar. Biol. 118: 511–521.CrossRefGoogle Scholar
  19. Steinier, J., Y. Termonia & J. Deltour, 1972. Comments on smoothing and differentiation of data by simplified least square procedures. Anal. Chem. 44: 1906–1909.PubMedCrossRefGoogle Scholar
  20. Stephens, F. C., 1995. Variability of spectral absorption efficiency within living cells of Pyrocystis lunula (Dinophyta). Mar. Biol. 122: 325–331.Google Scholar
  21. Troussellier, M., C. Courties & S. Zettelmaier, 1995. Flow cytometric analysis of coastal lagoon bacterioplankton and picophyto-plankton: fixation and storage effects. Estuar. coast. shelf Sci. 40: 621–633.CrossRefGoogle Scholar
  22. Underwood, A. J., 1997. Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge, 504 pp.Google Scholar
  23. Vaulot, D., C. Courties & F. Partensky, 1989. A simple method to preserve oceanic phytoplankton for flow cytometric analysis. Cytometry 10: 629–635.PubMedCrossRefGoogle Scholar
  24. Wilson, P. D. & S. R. Polo, 1981. Polynomial filters of any degree. J. opt. Soc. Am. 71: 599–603.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Michael H. Graham
    • 1
  • B. Greg Mitchell
    • 1
  1. 1.Scripps Institution of OceanographyUniversity of California San DiegoLa JollaUSA

Personalised recommendations