Advertisement

The ecological effects of mining discharges on subtidal habitats dominated by macroalgae in northern Chile: population and community level studies

  • J. A. Vásquez
  • J. M. A. Vega
  • B. Matsuhiro
  • C. Urzúa
Conference paper
  • 425 Downloads
Part of the Developments in Hydrobiology book series (DIHY, volume 137)

Abstract

In 1996/97, a study was carried out to evaluate several variables related to the potential ecological effects of soluble copper and iron released as the result of direct dumping of mine tailing into the littoral zone of the Pacific Ocean off northern Chile. Variables studied included:
  1. 1.

    content of copper and iron in mining discharges;

     
  2. 2.

    distribution of Cu and Fe in seawater at study sites;

     
  3. 3.

    distribution of Cu and Fe in the seaweed Lessonia trabeculata and in its alginates (obtained from frond, stipe and holdfast);

     
  4. 4.

    alterations in Lessonia morphology; and

     
  5. 5.

    variability in the macroinvertebrate community associated with Lessonia holdfasts and the inter-plant subtidal community.

     

The variables were evaluated for different depths and distance from discharge sources, as well as for control areas far from any mining activity. It was observed that tailings from copper mining caused more ecological perturbation than those from iron mining; however, the lack of organisms very close to tailing discharges could be caused by stress produced by loading of fine sediments rather than by the presence of heavy metals. This work shows that the concentrations of heavy metals in seawater, plants, and alginates of Lessonia in contaminated and control sites were highly variable, decreasing with depth and distance from the contamination source. What were originally considered as control areas far from anthropogenic metal release, showed high concentration of heavy metal due to natural orogenetic processes occurring along the Chilean coast.

Key words

coastal pollution copper pollution iron pollution heavy metals macroalgae macroinvertebrates Lessonia L. trabeculata 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahumada, R., 1994. Niveles de concentración e índices de bioacu-mulación de metales pesados (Cd, Cr, Hg. Ni, Cu, Pb, y Zn) en tejidos de invertebrados bénticos de Bahía San Vicente, Chile. Rev. Biol. mar. 29: 77–87.Google Scholar
  2. Anderson, S. & L. Kaustky, 1996. Copper effects on reproductive stages of Baltic Sea Fucus vesiculosus. Mar. Biol. 125: 171–176.CrossRefGoogle Scholar
  3. Berndt, H., U. Harms & M. Sonneborn, 1985. Multielement-spurenanreicherung aus wassern an aktivkohle zur probenvorbereitung fur die atomspektroskopie (Flammen-AAS, ICP/OES) Fresenius Z. Anal Chem. 3: 329–333.Google Scholar
  4. Boré, D. H. Robothan, R. Trucco, J. Inda & M. L. Fernandez, 1989. Evaluacion Preliminar de la presencia de metales pesados en recursos pesqueros de importancia comercial de la III Región de Chile. Rev. Pacífico Sur. (special number): 195–203.Google Scholar
  5. Bryan, G. W. & W. J. Langsten, 1992. Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Envir. Pollut. 76: 89–131.CrossRefGoogle Scholar
  6. Castilla, J. C., 1983. Environmental inpact in sandy beaches of copper mine tailings at Chañaral, Chile. Mar. Pollut. Bull. 14: 459–464.CrossRefGoogle Scholar
  7. Castilla, J. C. & E. Nealler, 1978. Marine environmental impact due to mining activities of El Salvador Copper Mine, Chile. Mar. Pollut. Bull. 9: 67–70.CrossRefGoogle Scholar
  8. Correa, J. A., P. González, P. Sanchez, J. Muñoz & M. C. Orellana, 1996. Copper-algae interactions: inheritance or adaptation? Env. monitor. Ass. 40: 41–54.CrossRefGoogle Scholar
  9. Corvalán, J., 1985. Recursos no renovables, In Soler, F. (ed.), Medio Ambiente en Chile. Ediciones Universidad Catolica de Chile: 165–181.Google Scholar
  10. Gledhill, M., M. Nimmo, S. J. Hill & M. T. Brown, 1997. The toxicity of copper (II) species to marine algae, with particular reference to macroalgae. J. Phycol. 33: 2–11.CrossRefGoogle Scholar
  11. Jaksic F. & R. Medel, 1987. El acuchillamiento de datos como método de obtención de intervalos de confianza y de prueba de hipótesis para índices ecológicos. Medio Ambiente 8: 95–103.Google Scholar
  12. Karez, C. S. & R. C. Pereira, 1995. Metal contents in polyphenolic fractions extracted from the brown alga Padina gymnospora. Bot. mar. 38: 151–155.CrossRefGoogle Scholar
  13. Lecaros, O. & M. S. Asterga, 1992. Metales pesados en Macrocystis pyrifera (huiro) de la costa del Estrecho de Magallanes. Rev. Biol. mar. 27: 5–16.Google Scholar
  14. Lewis, A. G., 1994. Copper In Water and Aquatic Environments. International Copper Association Ltd. New York, NY U.S.A., 72 pp.Google Scholar
  15. Morrisey, D. J., A. J. Underwood & L. Howitt, 1996. Effects of copper on the fauna of marine soft-sediments: an experimental field study. Mar. Biol. 125: 199–213.CrossRefGoogle Scholar
  16. Ojeda, F. P. & B. Santelices, 1984. Invertebrate communities in holdfasts of the kelp Macrocystis pyrifera from southern Chile. Mar. Ecol. Prog. Ser. 16: 65–73.CrossRefGoogle Scholar
  17. Paskins-Hurlburt, A., Y. Tanaka & S. C. Skoryna, 1976. Isolation and metal binding properties of fucoidan. Bot. mar., 19: 327–328.Google Scholar
  18. Pedersen, A., 1984. Studies on phenol content and heavy metal uptake in fucoids. Hydrobiologia 116/117: 498–504CrossRefGoogle Scholar
  19. Ragan, M. A., O. Smidsrod & B. Larsen, 1979. Chelation of divalent metal ions by brown alga polyphenols. Mar. Chem. 7: 265–271.CrossRefGoogle Scholar
  20. Smith, S. D. A., 1996. The macroafaunal community of Ecklonia radiata holdfasts: description of the faunal assemblage and variation associated with differences in holdfast volume. Aust. J. Ecol. 21:81–95.CrossRefGoogle Scholar
  21. Smith, S. D. A. & R. D. Simpson, 1993. Effects of pollution on holdfast macrofauna of the kelp Eklonia radiata: discrimination at different taxonomic levels. Mar. Ecol. Prog. Ser. 96: 199–208.CrossRefGoogle Scholar
  22. Snider, L. J., 1985. Demersal zooplankton of the giant kelp Macrocystis pyrifera: patterns of emergence and the population structure of three gammarid amphipod species. Ph.D. thesis, University of California, San Diego, Scripps Intitution of Oceanography, 238 pp.Google Scholar
  23. Sokal, R. R. & F. J. Rohlf, 1981. Biometry. The Principles and Practice of Statistics in Biological Research 2nd Edn., W.H. Freeman & Company, New York, 859 pp.Google Scholar
  24. Trucco, R. G., J. Inda & M. L. Fernandez, 1990. Heavy metal concentration in sediments from Tongoy and Herradura Bays, Coquimbo, Chile. Mar. Pollut. Bull. 21: 229–232.CrossRefGoogle Scholar
  25. Vásquez, J. A., 1992. Lessonia trabeculata a subtidal bottom kelp in northen Chile: a case study for a structural and geographical comparison. In Seeliger, U. (ed.), Coastal Plant Communities of Latin America. Academic Press, San Diego: 77–89.Google Scholar
  26. Vásquez, J. A., 1993. Effects on the animal community of dis-lodgement of holdfasts of Macrocystis pyrifera. Pac. Sci. 47: 180–184.Google Scholar
  27. Vásquez, J. A. & N. Guerra, 1996. The use of seaweeds as bioin-dicators of natural and anthropogenic contaminants in northern Chile. Hydrobiologia 326/327: 327–333.CrossRefGoogle Scholar
  28. Vásquez, J. A. & B. Santelices, 1984. Comunidades de macroin-vertebrados en discos adhesivos de Lessonia nigrescens Bory (Phaeophyta) en Chile central. Rev. Chile. Historia. Natural 57: 131–154.Google Scholar
  29. Vermeer, K. & J. C. Castilla, 1991. High cadmium residues observed during a pilot study in shorebirds and their prey downstream from El Salvador copper mine, Chile. Bull. envir. Contam. Toxicol. 46: 242–248.CrossRefGoogle Scholar
  30. Vila, T. & R. H. Sillitoe, 1991. Gold-rich porphyry systems in the Maricunga belt, northern Chile. Econ. Geol. 86: 1238–1260.CrossRefGoogle Scholar
  31. Villouta, E. & B. Santelices, 1986. Lessonia trabeculata sp. nov. (Laminariales, Phaeophyta), a new kelp from Chile. Phycologia 25: 81–86.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • J. A. Vásquez
    • 1
  • J. M. A. Vega
    • 1
  • B. Matsuhiro
    • 2
  • C. Urzúa
    • 2
  1. 1.Dept. Biología MarinaUniversidad Católica del Norte CasillaCoquimboChile
  2. 2.Dept. Ciencias QuímicasUniversidad de Santiago de Chile CasillaCorreo 2 SantiagoChile

Personalised recommendations