The effects of a simulated harvest on Porphyra (Bangiales, Rhodophyta) in South Africa

  • N. J. Griffin
  • J. J. Bolton
  • R. J. Anderson
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 137)


In South Africa, Porphyra has, until recently, been little exploited, having been harvested only for a small healthfood market. However, the advent of land-based abalone farming has increased the pressure on wild Porphyra populations, as Porphyra is in demand for abalone fodder. This paper reports on the effects of a simulated harvest on Porphyra populations and those of sympatric fauna. Harvesting, starting in autumn, was found to reduce the biomass of Porphyra, an effect detectable up to six months later. Porphyra had a patchy distribution, with patches having a mode of approximately 300 thalli m−2. The main effect of harvesting was the removal of patches, as mean thallus size changed little in response to harvesting. Nine months after the start of the experiment, control populations had been reduced, through loss of patches, to the level of treatment populations. Although harvesting Porphyra reduced populations of some sympatric fauna (amphipods, isopods and littorinid snails), natural Porphyra population decreases had a comparable effect. Some recommendations are discussed for the management and controlled harvesting of Porphyra populations in South Africa.

Key words

Porphyra Bangiales Rhodophyta harvest trials harvest impact nori South Africa resource management abalone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agardh, J. G., 1890. Till algernes Systematik. Nya bidrag. Lunds Universitets Årsskrift, Afd. 2,26: 1–125.Google Scholar
  2. Anderson, R. J., R. H. Simons & N. G. Jarman, 1989. Commercial seaweeds in southern Africa: a review of utilization and research. S. Afr. J. mar. Sci. 8: 277–299.CrossRefGoogle Scholar
  3. Bolton, J. J. & M. A. P. Joska, 1995. Population studies on a South African carrageenophyte: Iridaea capensis (Gigartin-aceae, Rhodophyta). Hydrobiologia 260/261: 191–195.CrossRefGoogle Scholar
  4. Branch, G. M., S. Eekhout & A. L. Bosnian, 1990. Short-term effects of the 1988 Orange River floods on the intertidal rocky-shore communities of the open coast. Trans. r. Soc. S. Afr. 47: 331–354.CrossRefGoogle Scholar
  5. Clarke, K. R., 1993. Non-parametric multivariate analyses of change in community structure. Aust. J. Ecol. 18: 117–143.CrossRefGoogle Scholar
  6. Clifford, H. T. & W. Stephenson, 1975. An Introduction to Numerical Classification. Academic Press, London, 229 pp.Google Scholar
  7. Dice, L. R., 1945. Measures of the amount of ecological association between species. Ecology 26: 297–302.CrossRefGoogle Scholar
  8. Field, J. G., K. R. Clarke & R. M. Warwick, 1982. A practical strategy for analysing multispecies distribution patterns. Mar. Ecol. Prog. Ser. 8: 37–52.CrossRefGoogle Scholar
  9. Graves, J. M., 1969. The genus Porphyra on South African coasts: I. observations on the autecology of Porphyra capensis sensu Isaac (1957), including a description of dwarf plants. J. s. afr. Bot. 35: 343–362.Google Scholar
  10. Griffin, N. J., J. J. Bolton & R. J. Anderson, 1998. Potential for harvest of Porphyra species in the south western Cape. Unpublished Sea Fisheries Research Institute Report, Sea Fisheries Research Institute, Roggebaai, 48 pp.Google Scholar
  11. Hanelt, D., K. Huppertz & W. Nultsch, 1993. Daily course of photosynthesis and photoinhibition in marine macroalgae investigated in the laboratory and field. Mar. Ecol. Prog. Ser. 97: 31–37.CrossRefGoogle Scholar
  12. Herbert, S. K. & J. R. Waaland, 1988. Photoinhibition of photosynthesis in a sun and shade species of the red algal genus Porphyra. Mar. Biol. 97: 1–7.CrossRefGoogle Scholar
  13. Isaac, W. E., 1957. The distribution, ecology and taxonomy of Porphyra on South African coasts. Proc. linn. Soc. Lond. 168: 61–65.CrossRefGoogle Scholar
  14. Keppel, G., 1991. Design and Analysis: a Researcher’s Handbook. Third edition. Prentice-Hall, Englewood Cliffs, New Jersey, 594 pp.Google Scholar
  15. Kiitzing, F. T., 1843. Phycologia Generalis. Brockhaus F. A, Leipzig, 458 pp., 80 pl.Google Scholar
  16. Levitt, G. J. & J. J. Bolton, 1991. Seasonal patterns of photosynthesis and physiological parameters and the effects of emersion in littoral seaweeds. Bot. mar. 34: 403–410.CrossRefGoogle Scholar
  17. Lipkin, Y., S. Beer & A. Eschel, 1993. The ability of Porphyra linearis (Rhodophyta) to tolerate prolonged periods of desiccation. Bot. mar. 36: 517–523.CrossRefGoogle Scholar
  18. Lubchenco, J. & J. Cubit, 1980. Heteromorphic life histories of certain marine algae as adaptations to variations in herbivory. Ecology 61: 676–687.CrossRefGoogle Scholar
  19. Minchin, P. R. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69: 89–107.CrossRefGoogle Scholar
  20. Nelson, W. A. & A. M. Conroy, 1989. Effect of harvest method and timing on yield and regeneration of Karengo (Porphyra spp.) (Bangiales, Rhodophyta) in New Zealand. J. appl. Phycol. 1: 277–283.CrossRefGoogle Scholar
  21. Roland, W. G. & L. M. Coon, 1984. Postharvest recovery of beds of the edible red alga Porphyra perforata. Can. J. Bot. 62: 1968–1970.CrossRefGoogle Scholar
  22. Scrosati, R. & R. E. DeWreede, 1997. The dynamics of the biomass-density relationship and frond biomass inequality for Mazzaella cornucopiae (Gigartinaceae, Rhodophyta): implications for the understanding of frond interactions. Phycologia 36: 506–516.CrossRefGoogle Scholar
  23. Shannon, C. E. & W. Weaver, 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, Illinois, 117 pp.Google Scholar
  24. Simpson, B. J. A., 1994. An investigation of diet management strategies for the culture of the South African abalone, Haliotis midae. M. Sc. thesis. University of Cape Town, 80 pp.Google Scholar
  25. Simpson, E. H., 1949. Measurement of diversity. Nature 163: 688.CrossRefGoogle Scholar
  26. Smith, C. M., K. Satoh & D. C. Fork, 1986. The effects of osmotic tissue dehydration and air drying on morphology and energy transfer in two species of Porphyra. Plant Physiol. 80: 843–847.PubMedCrossRefGoogle Scholar
  27. Sokal, R. R. & P. H. A. Sneath, 1963. Principles of Numerical Taxonomy. W. H. Freeman and Company, San Francisco, 359 pp.Google Scholar
  28. Somerfield, P. J. & K. R. Clarke, 1995. Taxonomic studies, in marine community studies, revisited. Mar. Ecol. Prog. Ser. 127: 113–119.CrossRefGoogle Scholar
  29. Stegenga, H., J. J. Bolton & J. J. Anderson, 1997. Seaweeds of the South African west coast. Contributions from the Bolus Herbarium Number 18, Bolus Herbarium, University of Cape Town, Cape Town, 655 pp., 61 pl.Google Scholar
  30. Stekoll, M. S. & L. Deysher, 1996. Recolonisation and restoration of the upper intertidal Fucus gardneri (Fucales, Phaeophyta) following the Exxon Valdez oil spill. Hydrobiologia 326/327: 311–316.CrossRefGoogle Scholar
  31. Stepto, N. K. & P. A. Cook, 1996. Feeding preferences of the juvenile south African abalone Haliotis midae (Linneaus, 1758). J. shellfish Res. 15:653–657.Google Scholar
  32. Underwood, A. J. & P. Jernakoff, 1984. The effects of tidal height, wave-exposure, seasonality and rock-pools on grazing and the distribution of intertidal macroalgae in New South Wales. J. exp. mar. Biol. Ecol. 75: 71–96.CrossRefGoogle Scholar
  33. Weller, D. E., 1987. A re-evaluation of the-3/2 power rule of plant self-thinning. Ecol. Monographs 57: 23–43.CrossRefGoogle Scholar
  34. Zar, J. H., 1984. Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 718 pp.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • N. J. Griffin
    • 1
  • J. J. Bolton
    • 1
  • R. J. Anderson
    • 2
  1. 1.Botany DepartmentUniversity of Cape TownRondeboschSouth Africa
  2. 2.Seaweed UnitRoggebaaiSouth Africa

Personalised recommendations