Advertisement

Seasonal variations of growth and agar composition of Gracilaria multipartita harvested along the Atlantic coast of Morocco

  • Thierry Givernaud
  • Abderrazak El Gourji
  • Aziza Mouradi-Givernaud
  • Yves Lemoine
  • Nadia Chiadmi
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 137)

Abstract

The biology and agar composition and properties of Gracilaria multipartita, a common species along the coasts of Morocco, have been studied on samples collected monthly for one year. Growth of the alga was maximum in spring and autumn, and the seaweed partially decayed after its maximum fertility was reached in June and October. The agar content and composition showed seasonal variations. The agar content was maximal in winter (30% dw), and decreased during the growth periods to minima in June and October (25% dw) which also corresponded to the maxima of fertility. The agar composition was characterized by high 6-O-methyl galactose (38–59 mol%) and 3,6 anhydrogalactose (24–39%) contents together with galactose (12.6–25.7 mol%) and sulphate (24–5.0% dw). The gel strength varied between 246 and 511 g cm−2 and increased after alkali treatment to reach a maximum of 880 g cm−2. The gel strength decreased after the alga reached its maxima of fertility, indicating a possible relationship between growth, fertility and agar metabolism. The content and quality of agar from G. multipartita growing in Morocco are suitable for an industrial use of the seaweed for the production of food-grade agar.

Key words

Gracilaria multipartita seasonal variation growth chemical composition agar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, N. S. & D. A. Rees, 1965. Porphyran: a polysaccharide with a masked repeating structure. J. Chem. Soc: 5880–5887.Google Scholar
  2. Anderson, N. S., T. C. S. Dolan & D. A. Rees, 1965. Evidence for a common structural pattern in the polysaccharide sulfates of the Rhodophyceae. Nature (London), 205: 1060–1062.CrossRefGoogle Scholar
  3. Araki, C., 1966. Some recent studies on the polysaccharides of agarophytes. Proc. int. Seaweed Symp. 5: 3–17.Google Scholar
  4. Armisen, R. & F. Galatas, 1987. Production, properties and uses of agar. In McHugh, D. J. (ed.), Production and Utilisation of Products from Commercial Seaweeds. FAO Technical paper 288: 1–57.Google Scholar
  5. Bird, K. T., 1988. Agar production and quality from Gracilaria sp. Strain G-16: Effects of environmental factors. Bot. mar. 31: 33–39.CrossRefGoogle Scholar
  6. Bird, K. T. & H. Ryther, 1990. Cultivation of Gracilaria verrucosa (Gracilariales, Rhodophyta) strain G-16 for agar. Hydrobiologia 204/205: 347–351.CrossRefGoogle Scholar
  7. Chirapart, A., M. Ohno, H. Ukeda, M. Sawamura & H. Kusunose, 1995. Chemical composition of agars from the newly reported Japanese agarophyte, Gracilariopsis lemaneiformis. J. appl. Phycol. 7: 359–365.CrossRefGoogle Scholar
  8. Cosson, J., E. Deslandes, M. Zinoun & A. Mouradi-Givernaud, 1995. Carrageenans and agars, red algal polysaccharides. Prog. Phycol. Res. 11:269–324.Google Scholar
  9. Cote, G. L. & M. D. Hanisak, 1986. Production and properties of native agars from Gracilaria tikvahiae and other red algae. Bot. mar. 29: 359–366.CrossRefGoogle Scholar
  10. Craigie, J. S. & C. Leigh, 1978. Carrageenans and agars. In Hel-lebust, J. A. & J. S. Craigie (eds), Handbook of Phycological Methods. Cambridge University Press: 110–131.Google Scholar
  11. Craigie, J. S. & Z. C. Wen, 1984. Effects of temperature and tissue age on gel strength and composition of agar from Gracilaria tikvahiae (Rhodophyceae). Can. J. Bot. 62: 1665–1670.CrossRefGoogle Scholar
  12. Dawes, C. J., 1987. The biology of commercially important tropical marine algae. In Bird, K. T. & P. H. Benson (eds), Seaweed Cultivation for Renewable Resources. Elsevier, Amsterdam: 155–190.Google Scholar
  13. Duckworth, M. & W. Yaphe, 1971. The structure of agar. I. Fractionation of complex mixture of polysaccharides. Carbohyd. Res. 16: 189–197.CrossRefGoogle Scholar
  14. Duckworth, M., K. C. Hong & W. Yaphe, 1971. The agar polysaccharides of Gracilaria species. Carbohydr. Res. 19: 1–9.CrossRefGoogle Scholar
  15. Guiseley, K. B., 1970. The relation between methoxyl content and gelling temperature of agarose. Carbohydr. Res. 13: 247–256.CrossRefGoogle Scholar
  16. Humm, H. J., 1951. The seaweeds resources of North Carolina. In Taylor, H. F. (ed.), Survey of Marine Fisheries of North Carolina. University of North Carolina Press, Chapel Hill: 231–250.Google Scholar
  17. Kim, D. H., 1970. Economically important seaweeds in Chile-I Gracilaria. Bot. mar. 13: 140–162.Google Scholar
  18. Lahaye, M. & W. Yaphe, 1988. Effects of seasons on the chemical structure and gel strength of Gracilaria pseudoverrucosa agar (Gracilariaceae, Rhodophyta). Carbohydr. Polymers 8: 285–301.CrossRefGoogle Scholar
  19. Lahaye, M., C. Rochas & W. Yaphe, 1986. A new procedure for determining the heterogeneity of agar polymers extracted in the cell wall of Gracilaria spp. (Gracilariaceae, Rhodophyta). Can. J. Bot. 64: 579–585.CrossRefGoogle Scholar
  20. Lapointe, B. E., 1981. The effect of light and nitrogen on growth, pigment content, and biochemical composition of Gracilaria fo-liifera v. angustissima (Gigartinales, Rhodophyta). J. Phycol. 17: 90–95.CrossRefGoogle Scholar
  21. Lapointe, B. E. & J. H. Ryther, 1978. Some aspects of the growth and yield of Gracilaria tikvahiae in culture. Aquaculture 15: 185–193.CrossRefGoogle Scholar
  22. Larsen, B., 1978. Brown seaweeds: analysis of ash, fiber, iodine and mannitol. In Hellebust, A. & J. Craigie (eds), Handbook of Phycological Methods: Physiological and Biochemical Methods. Cambridge University Press: 182–188.Google Scholar
  23. Luhan, R. J., 1992. Agar yield and gel strength of Gracilaria heterocladia collected from Iloilo, Central Philippines. Bot. mar. 35: 169–172.CrossRefGoogle Scholar
  24. Maas, F. M., I. Hoffmann, M. J. Van Harmelen & L. J. de Kok, 1986. Refractometric determination of sulfate and others anions in plants separated by H.P.L.C. Plant Soil 91: 129–132.CrossRefGoogle Scholar
  25. Mollet, J. C., M. C. Verdus, R. Kling & H. Morvan, 1995. Improved protoplast yield and cell wall regeneration in Gracilaria verrucosa (Huds.) Papenfuss (Gracilariales, Rhodophyta). J. exp. Bot. 46: 239–247.CrossRefGoogle Scholar
  26. Mouradi-Givernaud, A., T. Givernaud, H. Morvan & J. Cosson, 1993. Annual variations of the biochemical composition of Gelidium latifolium (Greville) Thuret et Bornet. Hydrobiologia 260/261: 607–612.CrossRefGoogle Scholar
  27. Orosco, C. A., A. Chirapart, M. Nukaya, M. Sawamura & H. Kusunose, 1992. Yield and physical characteristics of agar from Gracilaria chorda Holmes: Comparison with those from Southeast Asian species. Nippon Suisan Gakkaishi 58: 1711–1716.CrossRefGoogle Scholar
  28. Pennimann, C. A., 1977. Seasonal chemical and reproductive changes in Gracilaria foliifera (Forskal.) Boerg. from Great Bay, New Hampshire (U.S.A.) J. Phycol. (Suppl.) 13: 53.Google Scholar
  29. Phang, S. M., S. Shaharuddin, H. Noraishah & A. Sasekumar, 1996. Studies on Gracilaria changii (Gracilariales, Rhodophyta) from Malaysian mangroves. Hydrobiologia 326/327: 347–352.CrossRefGoogle Scholar
  30. Santelices, B. & M. Doty, 1989. A review of Gracilaria farming. Aquaculture 78: 95–133.CrossRefGoogle Scholar
  31. Stevenson T. T. & R. H. Furneaux, 1991. Chemical methods for the analysis of sulfated galactans from red algae. Carbohydr. Res. 210: 277–298.PubMedCrossRefGoogle Scholar
  32. Valiente, O., L. E. Fernandez, R. M. Perez, G. Marquina & H. Velez, 1992. Agar polysaccharides from the red seaweeds Gracilaria domingensis Sonder ex Kützing and Gracilaria mammilaris (Montagne) Howe. Bot. mar. 35: 77–81.CrossRefGoogle Scholar
  33. Whyte, J. N. C. & J. R. Englar, 1976. Fisheries and Marine Service, Canada. Tech. rep. No 623.Google Scholar
  34. Whyte, J. C. & J. R. Englar, 1980. Chemical composition and quality of agars in the morphotypes of Gracilaria from British Columbia. Bot. mar. 23: 277–283.Google Scholar
  35. Whyte, J. C. & J. R. Englar, 1981. Agar from an intertidal population of Gracilaria sp. Proc. int. Seaweed Symp. 10: 537–542.Google Scholar
  36. Whyte, J. N. C., J. R. Englar, R. G. Saunders & J. C. Lindsay, 1981. Seasonal variations in biomass, quantity and quality of agar, from the reproductive and vegetative stages of Gracilaria (verrucosa type). Bot. mar. 24: 493–501.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Thierry Givernaud
    • 2
  • Abderrazak El Gourji
    • 1
  • Aziza Mouradi-Givernaud
    • 1
  • Yves Lemoine
    • 3
  • Nadia Chiadmi
    • 1
  1. 1.Laboratoire de Biochimie et de Biotechnologies Marines, Faculté des SciencesKénitraMorocco
  2. 2.SETEXAMKénitraMorocco
  3. 3.Laboratoire de Cytophysiologie Végétale et PhycologieVilleneuve d’ascq CedexFrance

Personalised recommendations