Population structure and reproduction of the carrageenophyte Chondracanthus pectinatus in the Gulf of California

  • Isaí Pacheco-Ruíz
  • José A. Zertuche-González.
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 137)


Population structure and dynamics of the carrageenophyte Chondracanthus pectinatus (Dawson) L. Aguilar & R. Aguilar, an endemic species from the Gulf of California, were studied from November 1994 to December 1995. Plant maximum size and weight were reached in May (80 cm, 480 g dry wt), when new recruits were approximately 0.6 mm in length. In April, the first plants that washed ashore were observed at densities of 25 g dry wt m−1 of shore line. In summer (June–July), plants in the water became fragmented into small pieces. Gametophytes were always more numerous than tetrasporophytes (7:3). Male plants were not observed in situ. Reproduction was observed as early as December in small plants (6 cm long), with a low cystocarp and tetrasporangia density. However, the density of reproductive tissue increased exponentially in spring (384000 cystocarps, 111 000 tetrasporangia per plant). Although reproduction by spores is significant, vegetative tissue remaining submerged is capable of re-attaching and generating new plants.

Key words

Chondracanthus pectinatus recruitment reproduction ecology California Gulf Mexico 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez-Borrego, S., J. A. Rivera, G. Gaxiola-Castro, M. J. Acosta-Ruíz & R. A. Schwanzlose, 1978. Nutrientes en el Golfo de California. Cienc mar. 5: 53–71.Google Scholar
  2. Avila, M., A. J. Hoffman & B. Santelices, 1985. Interacciones de temperatura, densidad de flujo fotónico y fotoperíodo sobre el desarrollo de etapas microscópicas de Lessonia nigrescens (Phaeophyta, Laminariales). Rev. chil. Hist. nat. 58: 71–82.Google Scholar
  3. Ballesteros-Grijalva, G., G. Chauvet-Allard & E. Durazo-Beltrán, 1991. Estimación de la abundancia de Gigartina canaliculata Harvey, en Bahía San Quintín, Baja California, México. Cienc. mar. 17: 99–108.Google Scholar
  4. Ballesteros-Grijalva, G., J. U. Labastida-Woods & E. Durazo-Beltrán, 1990. Abundancia de Gigartina canaliculata Harvey, en el ejido Eréndira y Popotla B.C., México. Cienc. mar. 16: 23–34.Google Scholar
  5. Bhattacharya, D., 1985. The demography of fronds of Chondrus crispus Stackhouse. J. exp. mar. Biol. Ecol. 91: 217–31.CrossRefGoogle Scholar
  6. Bray, N. A. & J. M. Robles, 1991. Physical Oceanography of the Gulf of California. In: Dauphin J. P., & B. R. T. Simoneit (eds), The Gulf and Peninsular Province of the California. Tulsa, Okla.: Am. Assoc. Petrol. Geol.: 511–533.Google Scholar
  7. Christie, A. O. & L. V. Evans, 1962. Periodicity in the liberation of gametes of zoospores of Enteromorpha intestinalis Link. Nature 193:193–194.CrossRefGoogle Scholar
  8. Chapman, A. R. O., 1986. Populations and community ecology of seaweeds. Adv. mar. Biol. 23: 1–161.CrossRefGoogle Scholar
  9. Chen, L. C-M. & J. McLachlan, 1972. The life history Chondrus crispus. Can. J. Bot. 50: 1055–1060.CrossRefGoogle Scholar
  10. Chen, L. C-M. & J. McLachlan, 1980. Rhodoglossum affine (Harv.) Kylin (Gigartinaceae, Rhodophyta) in culture. Syesis 12: 113–116.Google Scholar
  11. Dawson, E. Y., 1960 A review of the ecology, distribution and affinities of the benthic flora, In Symposium on the biogeography of Baja California and Adjacents Seas. Syst. Zool. 9: 93–100.CrossRefGoogle Scholar
  12. Dawson, E. Y., 1961. Marine red algae of Pacific Mexico (Gigar-tinales). Pac. Nat. 2: 191–375.Google Scholar
  13. Dixon, P. S., 1965. Perennation, vegetative propagation and algal life histories, with special reference to Asparagopsis and other Rhodophyta. Bot. Gothoburg. 3: 67–74.Google Scholar
  14. Dixon, P. S., 1973. Biology of the Rhodophyta. Oliver & Boyd, Edinburgh, 285 pp.Google Scholar
  15. Garbary, D. J. & R. E. DeWreede, 1986. Life history phases in the natural populations of Gigartinaceae (Rhodophyta): quantification using resorcinol. In Lobban, C. S., D. C. Chapman & B. P. Kremer (eds), Experimental Phycology a Laboratory Manual. Cambdrige Univ. Press, New York: 174–178.Google Scholar
  16. Hansen, J. E., 1977. Ecology and natural history of Iridaea cordata (Gigartinales, Rhodophyta) growth. J. Phycol. 13: 395–402.Google Scholar
  17. Hansen, J. E., 1981. Studies on the population dynamics of Iridaea cordata (Gigartinales, Rhodophyta). Proc. int. Seaweed Symp. 8: 336–341.Google Scholar
  18. Hansen, J. E. & W. T. Doyle, 1976. Ecology and natural history of Iridaea cordata (Rhodophyta; Gigartinnaceae): population structure. J. Phycol. 12: 273–278.Google Scholar
  19. Katada, M., 1955. Fundamental studies on the propagation of Gelidiaceous algae with special reference to shedding and adhesion of the spores, germination, growth and vegetative reproduction. J. Shim. Coll. Fish. 5: 1–87.Google Scholar
  20. Knight, M. & M. W. Parke, 1931. Manx Algae. Liverpool University Press, Liverpool, 260 pp.Google Scholar
  21. Lazo, M. L., M. Greenwell & J. McLachlan, 1989. Population structure of Chondrus crispus Stackhouse (Gigartinaceae, Rhodophyta) along the coast of Prince Edward Island, Canada: distribution of gametophytic and sporophytic fronds. J. exp. mar. Biol. Ecol. 126: 45–58.CrossRefGoogle Scholar
  22. McCourt, R. M., 1984a. Niche differences between sympatric Sar-gassum species in the northern Gulf of California. Mar. Ecol. Prog. Ser. 18: 139–148.CrossRefGoogle Scholar
  23. McCourt, R. M., 1984b. Seasonal patterns of abundance, distributions, and phenology in relation to growth strategies of three Sargassum species. J. exp. mar. Biol. Ecol. 74: 141–156.CrossRefGoogle Scholar
  24. May, G., 1986. Life history variation in a predominantly gametophytic population of Iridaea cordata (Gigartinaceae, Rhodophyta). J. Phycol. 22: 448–455.CrossRefGoogle Scholar
  25. Melo, A. R. & M. Neushul, 1993. Life history and reproductive potential of the agarophyte Gelidium robustum in California. Hydrobiologia 260/261: 223–29.CrossRefGoogle Scholar
  26. Norris, J. N., 1975. The marine algae of the northern Gulf of California. Ph. D. diss., Univ. Calif., Santa Barbara, 575 pp.Google Scholar
  27. Oza, R. M. & V. Krishnamurthy, 1968. Studies on carposporic rhythm of Gracilaria verrucosa (Huds.) Papenf. Bot. mar. 11: 118–121.CrossRefGoogle Scholar
  28. Pacheco-Ruíz, I., J. A. Zertuche-González, A. Cabello-Passini & B. H. Brinkhuis, 1992. Growth responses and seasonal biomass variation of Gigartina pectinata Dawson (Rhodophyta) in the Gulf of California. J. exp. mar. Biol. Ecol. 157: 263–274.CrossRefGoogle Scholar
  29. Pacheco-Ruíz, I., J. A. Zertuche-González, F. Correa-Díaz, F. Arellano-Carbajal & A. Chee-Barragán, 1999. Gracilariopsis lemaneiformis beds along the west coast of the Gulf of California, Mexico. Hydrobiologia 398/399 (Dev. Hydrobiol. 137): 509–514.CrossRefGoogle Scholar
  30. Perrone, C. & C. Cecere, 1997. Regeneration and mechanisms of secondary attachment in Solieria filiformis (Gigartinales, Rhodophyta). Phycologia 36: 120–127.CrossRefGoogle Scholar
  31. Polanshek, A. R. & J. A. West, 1977. Culture and hybridization studies on Gigartina papillata (Rhodophyta). J. Phycol. 13: 141–149.Google Scholar
  32. Polne, M., M. Neushul & A. Gibor, 1981. Studies in the domestication of Eucheuma uncinatimi. Proc. int. Seaweed Symp. 10: 619–624.Google Scholar
  33. Rao, U. M. & N. Kaliaperumal, 1983. Effects of environmental factors on the liberations of spores from some red algae of Visakhapatnam coast. J. exp. mar. Biol. Ecol. 70: 45–53.CrossRefGoogle Scholar
  34. Rao, U. M. & G. Subbarangaiah, 1981. Effects of environmental factors on the diurnal periodicity of tetraspores of some Gigartinales (Rhodophyta). Proc. int. Seaweed Symp. 10: 209–214.Google Scholar
  35. Roden, G. I. & G. W. Groves, 1959. Recent oceanographic investigations in the Gulf of California. J. mar. Res. 18: 10–35.Google Scholar
  36. Santelices, B., 1990. Patterns of reproduction, dispersal and recruitment in seaweeds. Oceanog. Mar. Biol. Ann. Rev. 28: 177–276.Google Scholar
  37. Taylor, A. R. A., L. C-M. Chen, B. D. Smith & L. S. Staples, 1981. Chondrus holdfasts in natural populations and in culture. Proc. int. Seaweed Symp. 8: 140–143.Google Scholar
  38. West, J. A. & M. D. Guiry, 1982. A life history study of Gigartina johnstonii (Rhodophyta) from the Gulf of California. Bot. mar. 25:205–11.CrossRefGoogle Scholar
  39. West, J. A., G. Zuccarello & H. P. Calumpong, 1992. Bostrychia bispora sp. nov. (Rhodomelaceae, Rhodophyta), an apomictic species from Darwin, Australia: reproduction and development in culture. Phycologia 31: 37–52.CrossRefGoogle Scholar
  40. Zertuche, J., 1989. Strategies for continuous culture of non-perennial carrageennophytes from the Gulf of California. In Oliveira, E. C. de & N. Kautsky (eds), Cultivation of Seaweeds in Latin America. Univ. S. Paulo/Int. Foundation for Science: 95–100.Google Scholar
  41. Zertuche-González, J. A., 1988. In situ life history, growth and car-rageenan characteristics of Eucheuma uncinatimi (Setchell and Gardner) Dawson from the Gulf of California. Ph. D. diss., State Univ. New York, Stony Brook, 162 pp.Google Scholar
  42. Zertuche-González, J. A., I. Pacheco-Ruíz & J. González-González, 1995. Macroalgas. In Ficher, W., F. Krupp, F. Schneider, W. Sommer, K. E. Carpenter V. H. Niem (eds), Guía FAO para la Identificación de las Especies para los Fines de la Pesca. Pacifico centro-oriental. Organizacion de las Naciones Unidas para la Agricultura y la Alimentación. Plantas e invertebrados., Roma: 1: 9–82.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Isaí Pacheco-Ruíz
    • 1
  • José A. Zertuche-González.
    • 1
  1. 1.Instituto de Investigaciones OceanológicasUABCEnsenadaMexico

Personalised recommendations