Morphology and reproduction of the adventive Mediterranean rhodophyte Polysiphonia setacea

  • Fabio Rindi
  • Michael D. Guiry
  • Francesco Cinelli
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 137)


The red alga Polysiphonia setacea Hollenberg (=Womersleyella setacea (Hollenberg) R. Norris), described originally from the Hawaiian Islands and later reported for other tropical localities, has recently become widespread in the Mediterranean. In several localities it forms a dense, almost monospecific turf but, despite its abundance, it appears to reproduce only vegetatively; neither sporangia nor sexual reproductive structures have thus far been found. In order to elucidate its life history, plants were cultured in a variety of conditions of temperature, daylength and photon irradiance, and the upper thermal limit was also determined. Isolates of P. setacea grew well in culture, but were more tufted and branched than wild plants. No reproduction by spores or gametes was observed and only an unusual form of vegetative regeneration was found. Some pericentral cells became darker and larger than the others and produced proliferations from which new plants arose. Plants grew best at 15 and 20 °C, and relatively poor growth was observed at 10 and 25 °C. At 20 °C growth was better in long days than in short days. The upper thermal limit was 28 °C, and plants were able to tolerate a temperature as low as 5 °C for 4 weeks without any damage. These observations show that P. setacea is well adapted to the environmental conditions of the western Mediterranean, and there is good agreement with the phenology of the species in the wild. Although this entity has been treated as an introduction from a tropical area, our results suggest that the Mediterranean entity would not be able to survive or grow in surface waters of tropical areas whence this species has been reported. However, the occurrence of thermal ecotypes in P. setacea is a possibility and further studies, based perhaps on molecular data, are necessary to assess the origin of the Mediterranean populations.

Key words

Polysiphonia setacea Rhodophyta culture growth biogeography Mediterranean Sea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Airoldi, L., M. Fabiano & F. Cinelli, 1996. Sediment deposition and movement over a turf assemblage in a shallow rocky coastal area of the Ligurian Sea. Mar. Ecol. Prog. Ser. 33: 241–251.CrossRefGoogle Scholar
  2. Airoldi, L., F. Rindi & F. Cinelli, 1995. Structure, seasonal dynamics and reproductive phenology of a filamentous turf assemblage on sediment influenced, rocky subtidal shore. Bot. mar. 38: 227–237.CrossRefGoogle Scholar
  3. Aponte, N. E. & D. L. Ballantine, 1987. The life history and development of Murray ella periclados (C. Agardh) Schmitz (Rhodophyta, Rhodomelaceae) in culture. Cryptogamie, Algol. 8: 29–39.Google Scholar
  4. Athanasiadis, A., 1997. North Aegean marine algae IV. Womers-leyella setacea (Hollenberg) R. E. Norris (Rhodophyta, Ceramiales). Bot. mar. 40: 473–476.CrossRefGoogle Scholar
  5. Breeman, A. M., 1988. Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: experimental and phenological evidence. Helgoländer Meeresunters. 41:199–241.Google Scholar
  6. Breeman, A. M. & H. Pakker, 1994. Temperature ecotypes in seaweeds: adaptative significance and biogeographic implications. Bot. mar. 37: 171–180.CrossRefGoogle Scholar
  7. Cambridge, M. L., A. M. Breeman & C. van den Hoek, 1991. Temperature responses and distribution of Australian species of Cladophora (Cladophorales: Chlorophyta). Aquat. Bot. 40: 73–90.CrossRefGoogle Scholar
  8. Cambridge, M. L., A. M. Breeman, S. Kraak & C. van den Hoek, 1987. Temperature responses of tropical to warm temperate Cladophora species in relation to their distribution in the Atlantic Ocean. Helgoländer Meeresunters. 41: 329–354.CrossRefGoogle Scholar
  9. Cormaci, M., G. Furnari, G. Alongi & D. Serio, 1994. On three interesting marine red algae (Ceramiales, Rhodophyta) from the Mediterranean Sea. Giorn. bot. ital. 128: 1001–1006.CrossRefGoogle Scholar
  10. Edwards, P., 1968. The life history of Polysiphonia denudata (Dillwyn) Kützing in culture. J. Phycol. 4: 35–37.CrossRefGoogle Scholar
  11. Egerod, L., 1971. Some marine algae from Thailand. Phycologia 10: 121–142.CrossRefGoogle Scholar
  12. Guiry, M. D. & E. M. Cunningham, 1984. Photoperiodic and temperature responses in the reproduction of north-eastern Atlantic Gigartina acicularis (Rhodophyta: Gigartinales). Phycologia 23: 357–367.CrossRefGoogle Scholar
  13. Hollenberg, G. J., 1968. An account of the species of Polysiphonia of the central and western tropical Pacific Ocean. Pacific Sci. 22: 56–98.Google Scholar
  14. Kapraun, D. F., 1977. Asexual propagules in the life history of Polysiphonia ferulacea (Rhodophyta, Ceramiales). Phycologia 16: 417–426.CrossRefGoogle Scholar
  15. Kapraun, D. F., 1978. Field and cultural studies on selected North Carolina Polysiphonia species. Bot. mar. 21: 143–153.CrossRefGoogle Scholar
  16. Koch, C., 1986. Attempted hybridization between Polysiphonia fibrinosa and P. violacea (Bangiophyceae) from Denmark; with culture studies primarily on P. fibrillosa. Nord. J. Bot. 6: 123–128.CrossRefGoogle Scholar
  17. Kudo, T. & M. Masuda, 1986. A taxonomic study of Polysiphonia japonica Harvey and P. akkeshiensis Segi (Rhodophyta). Jap. J. Phycol. 34: 293–310.Google Scholar
  18. Lüning, K., 1990. Seaweeds. Their environment, biogeography and ecophysiology. John Wiley & Sons, New York: 527 pp.Google Scholar
  19. Maggs, C. A. & M. Hommersand, 1993. Seaweeds of the British Isles. Vol. 1 Rhodophyta. Part 3A Ceramiales. HMSO, London: 444 pp.Google Scholar
  20. McLachlan, J. & C. J. Bird, 1984. Geographical and experimental assessment of the distribution of Gracilaria species (Rhodophyta: Gigartinales) in relation to temperature. Helgoländer Meeresunters. 38: 319–334.CrossRefGoogle Scholar
  21. Norris, R. E., 1992. Ceramiales (Rhodophyceae) genera new to South Africa, including new species of Womersleyella and Her-posiphonia. S. Afr. J. Bot. 58: 65–76.Google Scholar
  22. Novaczek, I., A. M. Breeman & C. van den Hoek, 1989. Thermal tolerance of Stypocaulon scoparium (Phaeophyta, Sphacelariales) from eastern and western shores of the North Atlantic Ocean. Helgoländer Meeresunters. 43: 183–193.CrossRefGoogle Scholar
  23. Novaczek, I., G. W. Lubbers & A. M. Breeman, 1990. Thermal ecotypes of amphi-Atlantic algae. I. Algae of Arctic to cold-temperate distribution (Chaetomorpha melagonium, Devalerea ramentacea and Phycodrys rubens). Helgoländer Meeresunters. 44: 459–474.CrossRefGoogle Scholar
  24. Oliveira Filho, E. C. de & M. Cordeiro-Marino, 1970. On the identity of Lophosiphonia bermudensis Collins and Hervey and Dipterosiphonia rigens (Schousboe) Falkenberg. Phycologia 9: 1–3.CrossRefGoogle Scholar
  25. Oppen, M. J. H. van, H. Klerk, J. L. Olsen & W. T. Stam, 1996. Hidden diversity in marine algae: some examples of genetic variation below the species level. J. mar. biol. Ass. U.K. 76: 239–242.CrossRefGoogle Scholar
  26. Pakker, H. & A. M. Breeman, 1996. Temperature responses of tropical to warm-temperate Atlantic seaweeds. II. Evidence for eco-typic differentiation in amphi-Atlantic tropical-Mediterranean species. Eur. J. Phycol. 31: 133–141.CrossRefGoogle Scholar
  27. Pakker, H., W. F. Prud’homme van Reine & A. M. Breeman, 1994. Temperature responses and evolution of thermal traits in Cladophoropsis membranacea (Siphonocladales, Chlorophyta). J. Phycol. 30: 777–783.CrossRefGoogle Scholar
  28. Pakker, H., A. M. Breeman, W. F. Prud’homme van Reine & C. van den Hoek, 1995. A comparative study of temperature responses of Caribbean seaweeds from different biogeographic groups. J. Phycol. 31:499–507.CrossRefGoogle Scholar
  29. Rindi, F. & F. Cinelli, 1995. Contribution to the knowledge of the benthic algal flora of the Isle of Alboran, with notes on some little-known species in the Mediterranean. Cryptogamie, Algol. 16: 103–114.Google Scholar
  30. Rodriguez Prieto, C., C. F. Boudouresque & M. Verlaque, 1993.Nouvelles observations sur les algues marines du Parc Naturel Regional de Corse. Trav. sci. Pare nat. rég. Rés. nat. Corse, Fr. 41: 53–61.Google Scholar
  31. Rueness, J., 1971. Polysiphonia hemisphaerica Aresch. in Scandinavia. Norw. J. Bot. 18: 65–74.Google Scholar
  32. Rueness, J., 1973. Speciation in Polysiphonia (Rhodophyceae, Ceramiales) in view of hybridization experiments: P. hemisphaerica mdP boldii. Phycologia 12: 107–109.CrossRefGoogle Scholar
  33. Schnetter, R. & G. Bula-Meyer, 1982.Marine algen der Pazifikküste von Kolumbien. Chlorophyceae, Phaeophyceae, Rhodophyceae. Bibliotheca Phycol. 60: 1–287.Google Scholar
  34. Silva, P. C., P. Basson & R. L. Moe, 1996. Catalogue of the benthic marine algae of the Indian Ocean. University of California Press, Berkeley, 1259 pp.Google Scholar
  35. U.S. Navy, 1981. Marine climatic atlas of the world. Vol. 9. Worldwide means and standard deviations. U.S. Government Printing Office, Washington D.C.Google Scholar
  36. van den Hoek, C., 1982. The distribution of benthic marine algae in relation to the temperature regulation of their life histories. Biol. J. linn. Soc. 18: 81–144.CrossRefGoogle Scholar
  37. Verlaque, M., 1989.Contribution à la flore des algues marines de Méditerranée: espéces rares ou nouvelles pour les côtes françaises. Bot. mar. 32: 101–113.CrossRefGoogle Scholar
  38. Verlaque, M., 1994.Inventaire des plantes introduites en Mediterranée: origines et répercussions sur 1’environment et les activités humaines. Oceanol. Acta 17: 1–23.Google Scholar
  39. Winer, B. J., 1971. Statistical principles in experimental design. McGraw-Hill Kogakusha, Tokyo, 907 pp.Google Scholar
  40. Wynne, M. J., 1993. Benthic marine algae from the Maldives, Indian Ocean, collected during the R/V Te Vega expedition. Contr. Univ. Mich. Herb. 19: 5–30.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Fabio Rindi
    • 1
  • Michael D. Guiry
    • 1
  • Francesco Cinelli
    • 2
  1. 1.Department of Botany and Martin Ryan Marine Science InstituteNational University of IrelandGalwayIreland
  2. 2.Dipartimento di Scienze dell’Uomo e dell’AmbienteUniversità di PisaPisaItaly

Personalised recommendations